PurposeWe compare spectral-domain optical coherence tomography (SDOCT) measurements of minimum rim width (MRW), minimum rim area (MRA), and peripapillary retinal nerve fiber layer thickness (RNFLT) to complete orbital optic nerve axon counts in nonhuman primates (NHP) with unilateral experimental glaucoma (EG).MethodsBiweekly SDOCT measurements of MRW, MRA, and RNFLT were acquired under manometric IOP control (10 mm Hg) in 51 NHP during baseline (mean ± SD, 5.0 ± 1.6 sessions) and after laser photocoagulation was applied to the trabecular meshwork of one eye to induce chronic IOP elevation. At the study endpoint (predefined for each NHP), 100% axon counts were obtained from each optic nerve.ResultsFor SDOCT parameters at baseline, the correlation between the two eyes of each animal was strongest for RNFLT (R = 0.97) and MRW (R = 0.97), but lower for MRA (R = 0.85). At the final time point, average values in EG eyes relative to control eyes were: −22% for RNFLT, −38% for MRW, −36% for MRA, and −36% for optic nerve axons. The correlation with axon counts was strongest for RNFLT (R = 0.81), compared to MRW (R = 0.72, P = 0.001) or MRA (R = 0.70, P = 0.001). Diagnostic sensitivity was 75% for RNFLT, 90% for MRW, and 88% for MRA; all had 100% specificity.ConclusionsPeripapillary RNFLT was correlated more closely with total orbital optic nerve axon count than were the ONH parameters MRW or MRA. This is likely because glaucomatous deformation (beyond axon loss alone) has a greater influence on the ONH parameters MRW and MRA than on RNFLT.