Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Laser speckle contrast imaging (LSCI) is a non-invasive, powerful, and cost-effective imaging technique that has seen widespread adoption across various medical fields, particularly for blood flow imaging. While LSCI provides physicians with valuable insights into changes or occlusions in blood flow, the technique is susceptible to various factors and parameters that can impact measurement sensitivity and signal-to-noise ratio (SNR). These include the scattering of light, which can affect the quality and reliability of the LSCI data. The polarization of light holds significant promise to enhance the performance of LSCI. In this study, we employed polarization manipulation of light to investigate its impact on the performance of LSCI for measuring flow. Focusing on the application of LSCI in microcirculation within capillaries, we examined the effect of polarization control on the technique's flow measurement capabilities using a custom-designed phantom system. This phantom consisted of three tubes with inner diameters of 1.1 mm, 1.6 mm, and 2.8 mm, embedded in a polydimethylsiloxane (PDMS) matrix with optical properties similar to biological tissue. By manipulating the polarization of both the incident and reflected light, alternating between parallel and perpendicular states, we compared the performance of our LSCI system in detecting flow for different tube diameters and depths within the phantom. Our study revealed that while depth is a critical parameter influencing flow detection using LSCI, employing perpendicular polarization (between incident and reflected light) resulted in the lowest measurement error and highest SNR compared to parallel polarization and the absence of polarization control.
Laser speckle contrast imaging (LSCI) is a non-invasive, powerful, and cost-effective imaging technique that has seen widespread adoption across various medical fields, particularly for blood flow imaging. While LSCI provides physicians with valuable insights into changes or occlusions in blood flow, the technique is susceptible to various factors and parameters that can impact measurement sensitivity and signal-to-noise ratio (SNR). These include the scattering of light, which can affect the quality and reliability of the LSCI data. The polarization of light holds significant promise to enhance the performance of LSCI. In this study, we employed polarization manipulation of light to investigate its impact on the performance of LSCI for measuring flow. Focusing on the application of LSCI in microcirculation within capillaries, we examined the effect of polarization control on the technique's flow measurement capabilities using a custom-designed phantom system. This phantom consisted of three tubes with inner diameters of 1.1 mm, 1.6 mm, and 2.8 mm, embedded in a polydimethylsiloxane (PDMS) matrix with optical properties similar to biological tissue. By manipulating the polarization of both the incident and reflected light, alternating between parallel and perpendicular states, we compared the performance of our LSCI system in detecting flow for different tube diameters and depths within the phantom. Our study revealed that while depth is a critical parameter influencing flow detection using LSCI, employing perpendicular polarization (between incident and reflected light) resulted in the lowest measurement error and highest SNR compared to parallel polarization and the absence of polarization control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.