This study analyzes the effects of retrospective lipid suppression, a simulated macromolecular prior knowledge and different spline baseline stiffness values on 9.4T multi-slice proton FID-MRSI data spanning the whole cerebrum of human brain and the reproducibility of respective metabolite ratio to total creatine (/tCr) maps for 10 brain metabolites.Methods: Measurements were performed twice on 5 volunteers using a short TR and TE FID MRSI 2D sequence at 9.4T. The effects of retrospective lipid L2-regularization, macromolecular spectrum and different LCModel baseline flexibilities on SNR, FWHM, fitting residual, Cramér-Rao lower bound, and metabolite ratio maps were investigated. Intra-subject, inter-session coefficient of variation and the test-retest reproducibility of the mean metabolite ratios (/tCr) of each slice was calculated.Results: Transversal, sagittal, and coronal slices of many metabolite ratio maps correspond to the anatomically expected concentration relations in gray and white matter for the majority of the cerebrum when using a flexible baseline in LCModel fit. Results from the second measurements of the same subjects show that slice positioning and data quality correlate significantly to the first measurement.L2-regularization provided effective suppression of lipid-artifacts, but should be avoided if no artifacts are detected.
Conclusion:Reproducible concentration ratio maps (/tCr) for 4 metabolites (total choline, N-acetylaspartate, glutamate, and myoinositol) spanning the majority of the cerebrum and 6 metabolites (N-acetylaspartylglutamate, γ-aminobutyric acid, glutathione, taurine, glutamine, and aspartate) covering 32 mm in the upper part of the brain were acquired at 9.4T using multi-slice FID MRSI with retrospective lipid suppression, a macromolecular spectrum and a flexible LCModel baseline.