Purpose: The purpose of this study was to investigate changes in the mechanical properties of capsular tissue using shear wave elastography (SWE) and a durometer under various tensile loads, and to explore the reliability and correlation of SWE and durometer measurements to evaluate whether SWE technology could be used to assess tissue changes during capsule tensile loading. Methods: The inferior glenohumeral joint capsule was harvested from 10 fresh human cadaveric specimens. Tensile loading was applied to the capsular tissue using 1-, 3-, 5-, and 8-kg weights. Blinded investigators measured tissue stiffness and hardness during loading using SWE and a durometer, respectively. Intraobserver reliability was established for SWE and durometer measurements using intraclass correlation coefficients (ICCs). The Pearson product-moment correlation was used to assess the associations between SWE and durometer measurements. Results: The ICC 3,5 for durometer measurements was 0.90 (95% confidence interval [CI], 0.79 to 0.96; P<0.001) and 0.95 (95% CI, 0.88 to 0.98; P<0.001) for SWE measurements. The Pearson correlation coefficient values for 1-, 3-, and 5-kg weights were 0.56 (P=0.095), 0.36 (P=0.313), and-0.56 (P=0.089), respectively. When the 1-and 3-kg weights were combined, the ICC 3,5 was 0.72 (P<0.001), and it was 0.62 (P<0.001) when the 1-, 3-, and 5-kg weights were combined. The 8-kg measurements were severely limited due to SWE measurement saturation of the tissue samples. Conclusion: This study suggests that SWE is reliable for measuring capsular tissue stiffness changes in vitro at lower loads (1 and 3 kg) and provides a baseline for the non-invasive evaluation of effects of joint loading and mobilization on capsular tissues in vivo.