Despite holding great therapeutic potential, existing protocols for in vitro chondrogenesis and hyaline cartilage production from human induced pluripotent stem cells (hiPSC) are laborious and complex with unclear long-term consequences. Here, we developed a simple xeno- and feeder-free protocol for human hyaline cartilage production in vitro using hydrogel-cultured multi-tissue organoids (MTOs). We investigate gene regulatory networks during spontaneous hiPSC-MTO differentiation using RNA sequencing and bioinformatic analyses. We find the interplays between BMPs and neural FGF pathways are associated with the phenotype transition of MTOs. We recognize TGF-beta/BMP and Wnt signaling likely contribute to the long-term maintenance of MTO cartilage growth and further adoption of articular cartilage development. By comparing the MTO transcriptome with human lower limb chondrocytes, we observe that the expression of chondrocyte-specific genes in MTO shows a strong correlation with fetal lower limb chondrocytes. Collectively, our findings describe the self-organized emergence of hyaline cartilage in MTO, its associated molecular pathways, and its spontaneous adoption of articular cartilage development trajectory.