The zebrafish has recently emerged as a model system for investigating the developmental roles of glucocorticoid signaling and the mechanisms underlying glucocorticoid-induced developmental programming. To assess the role of the Glucocorticoid Receptor (GR) in such programming, we used CRISPR-Cas9 to produce a new frameshift mutation, GR 369-, which eliminates all potential in-frame initiation codons upstream of the DNA binding domain. Using RNA-seq to ask how this mutation affects the larval transcriptome under both normal conditions and with chronic cortisol treatment, we find that GR mediates most of the effects of the treatment, and paradoxically, that the transcriptome of cortisol-treated larvae is more like that of larvae lacking a GR than that of larvae with a GR, suggesting that the cortisol-treated larvae develop GR resistance. The one transcriptional regulator that was both underexpressed in GR 369larvae and consistently overexpressed in cortisol-treated larvae was klf9. We therefore used CRISPR-Cas9-mediated mutation of klf9 and RNA-seq to assess Klf9-dependent gene expression in both normal and cortisol-treated larvae. Our results indicate that Klf9 contributes significantly to the transcriptomic response to chronic cortisol exposure, mediating the upregulation of proinflammatory genes that we reported previously. The vertebrate hypothalamus-pituitary-adrenal (HPA) axis orchestrates physiological, behavioral, and metabolic adjustments required for homeostasis, by dynamically regulating production and secretion of adrenal steroids known as glucocorticoids. In humans the primary glucocorticoid is cortisol, the biological activity of which is mediated by two regulatory proteins in the nuclear receptor family, the ubiquitous glucocorticoid receptor (GR) and the more tissue-restricted mineralocorticoid receptor (MR). The GR binds cortisol less avidly than the MR and is thus more dynamically regulated over the normal physiological range of cortisol fluctuations 1,2. The GR and MR function both as transcription factors and as non-nuclear signaling proteins, including in the central nervous system where both proteins are highly expressed 1-5. Given that the GR is more widely expressed and more dynamically regulated by cortisol, it is generally thought to be the principal mediator of cortisolinduced genomic responses to circadian rhythms and acute stress 5. An important question for understanding GR function is what downstream transcriptional regulatory genes does it regulate, and to what end? Answering this question is not only important for understanding the physiological function and regulation of the GR, but also for deciphering the gene regulatory networks that orchestrate adaptive developmental programming in response to chronic glucocorticoid exposure such as occurs with chronic early life stress 6. The zebrafish has recently emerged as a model system well-suited to investigating the developmental functions of glucocorticoid signaling and mechanisms underlying stress-induced developmental programming 7-...