Fractional-order (FO) differential equations are more and more frequently applied to describe real-world applications or models of phenomena. Despite such models exhibiting high flexibility and good fits to experimental data, they introduce their inherent inaccuracy related to the order of approximation. This article shows that the chosen model influences the dynamic properties of signals. First, we calculated symbolically the steady-state values of an FO inertia using three variants of the Oustaloup filter approximation. Then, we showed how the models influence the Nyquist plots in the frequency domain. The unit step responses calculated using different models also have different plots. An example of FO control system evidenced different trajectories dependent on applied models. We concluded that publicized parameters of FO models should also consist of the name of the model used in calculations in order to correctly reproduce described phenomena. For this reason, the inappropriate use of FO models may lead to drawing incorrect conclusions about the described system.