Photodynamic therapy (PDT) could be a useful adjuvant in glioblastoma treatment. The fact that epidermal growth factor (EGF) and its receptor are involved in glioblastoma growth control led us to investigate the relationships between EGF and PDT with respect to three different glioma cell lines (C6, T98 G, U87 MG) responsive to growth stimulation by EGF. Flow cytometric analysis revealed that each cell line expressed EGF receptors. PDT was then applied to the cells using haematoporphyrin derivative (HPD) as photosensitizer and argon laser irradiation. When cells were incubated for 2 h with HPD (0.1-10 micrograms/ml) and then laser-irradiated (lambda = 514 nm; energy density 25 J/cm2), all three cell lines showed photosensitivity. The median lethal dose was respectively 3, 4.5 and 2.7 micrograms/ml for C6, T98 G and U87 MG. EGF (2-50 ng/ml) had no effect on HPD- and laser-induced toxicity when added to cells before PDT, whereas toxicity decreased for all three cell lines when EGF was added after PDT. HPD (1-2 micrograms/ml, incubation times 30-180 min) also induced an increase in EGF receptor expression for the C6 line.