The Cyclin E1 gene (CCNE1) is an ideal model to explore the mechanisms that control the transcription of cell cycle-regulated genes whose expression rises transiently before entry into S phase. E2F-dependent regulation of the CCNE1 promoter was shown to correlate with changes in the level of H3-K9 acetylation͞methyl-ation of nucleosomal histones positioned at the transcriptional start site region. Here we show that, upon growth stimulation, the same region is subject to variations of H3-R17 and H3-R26 methylation that correlate with the recruitment of coactivator-associated arginine methyltransferase 1 (CARM1) onto the CCNE1 and DHFR promoters. Accordingly, CARM1-deficient cells lack these modifications and present lowered levels and altered kinetics of CCNE1 and DHFR mRNA expression. Consistently, reporter gene assays demonstrate that CARM1 functions as a transcriptional coactivator for their E2F1͞DP1-stimulated expression. CARM1 recruitment at the CCNE1 gene requires activator E2Fs and ACTR, a member of the p160 coactivator family that is frequently overexpressed in human breast cancer. Finally, we show that grade-3 breast tumors present coelevated mRNA levels of ACTR and CARM1, along with their transcriptional target CCNE1. All together, our results indicate that CARM1 is an important regulator of the CCNE1 gene.ACTR ͉ CCNE1 ͉ histone ͉ arginine methylation ͉ breast tumor C yclin E1 (CCNE1) protein and mRNA levels are tightly regulated as an endpoint of several regulatory pathways that are critical for growth control and frequently altered in cancer cells (1, 2). CCNE1 gene transcription is undetectable in G 0 and G 1 phases of the cell cycle, whereas it rises sharply during a narrow window of time that precedes each entry into S phase. Several pieces of evidence suggest that the periodic association of activators E2Fs-and E2F-pocket protein complexes regulate CCNE1 gene expression (3-18). E2F complexes bound to this gene were found to recruit chromatin modifiers, including members of the SNF2-like helicase family, type I histone deacetylases, the acetyltransferase CBP͞p300, the lysine methyl transferase SUVAR39H1, and the protein arginine N-methyltransferase (PRMT) 5 (7, 9-14, 17, 18), suggesting that they foster periodic chromatin remodeling of the CCNE1 promoter region (11,12,14). Notably, repression of the CCNE1 gene in G 0 -G 1 correlates with the methylation of H3-K9 and H4-R3 on a single nucleosome positioned at the transcriptional start site (11)(12)(13)(14). Conversely, the late G 1 activation of the CCNE1 gene correlates with decreased H3-K9 methylation and with enhanced H3͞H4 acetylation of the same chromatin region (11)(12)(13)(14). Here, we reveal that this CCNE1 proximal promoter region is targeted by another histone arginine methyl-transferase, the type I enzyme PRMT4 [coactivator-associated arginine methyltransferase (CARM1)] (19-25). PRMT4͞CARM1 was initially described as a transcriptional coactivator of the p160 family of nuclear receptor-associated factors (Src-1͞NCoA1, GRIP1͞TIF2͞Src-2͞ NC...