Thiram-tetramethylthiuram disulphide -a chelator of heavy metals, inhibited DNA synthesis and induced apoptosis in cultured bovine capillary endothelial cells. Bovine capillary endothelial cells were 10 -60-fold more sensitive to thiram than other cell types. These effects were prevented by addition of antioxidants, indicating involvement of reactive oxygen species. Exogenously added Cu 2+ impeded specifically and almost completely the inhibitory effect of thiram for bovine capillary endothelial cells. Moreover, thiram had markedly inhibited human recombinant Cu/Zn superoxide dismutase enzymatic activity (85%) in vitro. Moreover, PC12-SOD cells with elevated Cu/Zn superoxide dismutase were less sensitive to thiram treatment than control cells. These data indicate that the effects of thiram are mediated by inhibition of Cu/Zn superoxide dismutase activity. Oral administration of thiram (13 -30 mg mouse 71 ), inhibited angiogenesis in CD1 nude mice. Tumour development is known to largely depend on angiogenesis. We found that oral administration of thiram (30 mg) to mice caused significant inhibition of C6 glioma tumour development (60%) and marked reduction (by 3 -5-fold) in metastatic growth of Lewis lung carcinoma. The data establish thiram as a potential inhibitor of angiogenesis and raise the possibility for its use as therapy in pathologies in which neovascularisation is involved, including neoplasia.