Photoluminescence (PL) blinking of single colloidal quantum dot (QD)-PL intensity switching between different brightness states under constant excitation-and photo-bleaching are roadblocks for most applications of QDs. This progress report shall treat PL blinking and photo-bleaching both as photochemical events, namely, PL blinking as reversible and photo-bleaching being irreversible ones. Most studies on single-molecule spectroscopy of QDs in literature are related to PL blinking, which invites us to concentrate our discussions on the PL blinking, including its brief history in 20 years, analysis methods, competitive mechanisms and different strategies to battle it. In terms of suppression of the PL blinking, wavefunction confinement-confining photo-generated electron and hole within the core and inner portion of the shell of a core/shell QD-demonstrates significant advantages. This strategy yields nearly non-blinking QDs with their emission peaks covering most part of the visible window. As expected, the resulting QDs from this new strategy also show substantially improved anti-bleaching features.