Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study aimed to determine the factors that influence the level of income inequality in member countries of the Organization of Islamic Cooperation (OC). The research period used was from 2012 to 2021, using the System Generalized Method of Moment (GMM) analysis tool. The variables used consist of the Gini ratio (proxy of income inequality), economic growth, Foreign Direct Investment (FDI), inflation, the average length of schooling (human capital proxy), and corruption perception index (sharia proxy). The results showed that sharia, human, and inflation variables had a negative effect, while economic growth and FDI had a positive and significant effect on income inequality in OIC countries. These results show that in addition to economic factors and human capital, sharia elements cannot be released in overcoming income inequality in OIC countries. Sharia is a driving factor in a more even distribution of income. Keywords: Income Inequality, Organization of Islamic Cooperation (OIC), System Generalized Method of Moment (GMM), Sharia ABSTRAK Penelitian ini bertujuan untuk mengetahui faktor-faktor yang mempengaruhi tingkat ketimpangan pendapatan di negara anggota Organization of Islamic Cooperation (OIC). Periode penelitian yang digunakan adalah dari tahun 2012 sampai dengan tahun 2021, dengan menggunakan alat analisis System Generalized Method of Moment (GMM). Variabel yang digunakan terdiri dari rasio gini (proksi ketimpangan pendapatan), pertumbuhan ekonomi, Foreign Direct Investment (FDI), inflasi, rata-rata lama sekolah (proksi human capital), dan indeks persepsi korupsi (proksi syariah). Hasil penelitian menunjukkan bahwa variabel syariah, human, dan inflasi berpengaruh negatif, sedangkan pertumbuhan ekonomi dan FDI berpengaruh positif dan signifikan terhadap ketimpangan pendapatan di negara-negara OIC. Hasil ini menunjukkan bahwa selain faktor ekonomi dan human capital unsur syariah tidak bisa dilepaskan dalam mengatasi ketimpangan pendapatan di negara OIC. Syariah menjadi faktor pendorong dalam distribusi pendapatan yang lebih merata. Kata kunci: Ketimpangan Pendapatan, Organization of Islamic Cooperation (OIC), System Generalized Method of Moment (GMM), Syariah REFERENCES Abdulkarim, F. M., & Ali, H. S. (2019). Financial inclusions, financial stability, and income inequality in oic countries: A GMM and quantile regression application. Journal of Islamic Monetary Economics and Finance, 5(2), 419–438. doi:10.21098/jimf.v5i2.1069 Alamanda, A. (2021). The effect of economic growth on income inequality: Panel data analysis from fifty countries. Info Artha, 5(1), 1–10. doi:10.31092/jia.v5i1.1176 Anto, M., H. (2011). Introducing an Islamic Human Development Index (I-HDI) to measure development in OIC countries. Islamic Economic Studies, 19(2), 69–95. Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte carlo evidence and an application to employment equations. Review of Economic Studies, 58(2), 277–297. doi:10.2307/2297968 Arellano, M., & Bond, S. (1998). Dynamic panel data estimation using DPD98: A guide for users. Manuscript, Oxford University. Auda, H. (2013). Novel symmetry tests in regression models based on gini mean difference. Metron, 71(1), 21–32. doi:10.1007/S40300-013-0004-1 Badriah, L. S. (2019). Ketimpangan distribusi pendapatan kaitannya dengan pertumbuhan ekonomi dan kemiskinan serta faktor-faktor yang mempengaruhinya. Sustainable Competitive Advantage (SCA-9) FEB UNSOED, 9(1), 232–248. Balseven, H., & Tugcu, C. T. (2017). Analyzing the effects of fiscal policy on income distribution: A comparison between developed and developing countries. International Journal of Economics and Financial Issues, 7(2), 377–383. Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1), 115–143. doi:10.1016/S0304-4076(98)00009-8 Boediono. (2011). Pengantar ilmu ekonomi: Ekonomi makro (Empat). Yogyakarta: Penerbit Buku Bhakti Profesindo (BPFE). Bouincha, M., & Karim, M. (2018). Income inequality and economic growth: An analysis using a panel data. International Journal of Economics and Finance, 10(5), 242-253. doi:10.5539/ijef.v10n5p242 Bucevska, V. (2020). Determinants of income inequality in EU candidate countries: A panel analysis. Economic Themes, 57(4), 397–413. doi:10.2478/ethemes-2019-0023 Bulir, A. (1998). Income inequalities: Does inflation matter? IMF Staff Papers, 21–34. doi:10.2307/4621662 Chancel, L., Piketty, T., Saez, E., & Zucman, G. (2022). World inequality report 2022. Retrieved from World Inequality Database website Chapra, M. U. (1993). Islamic and economic development. Islamabat: The Internasional Institute of Islamic Thought. Chapra, M. U. (2008). Ibn Khaldun’s theory of development: Does it help explain the low performance of the present-day muslim world? Journal of Socio-Economics, 37(2), 836–863. doi:10.1016/j.socec.2006.12.051 Checchi, D. (2001). Education, inequality and income inequality. LSE STICERD Research Paper, 52. Coady, D., & Dizioli, A. (2017). Income inequality and education revisited: Persistence, endogeneity, and heterogeneity. IMF Working Papers, 17(126), 1. doi: 10.5089/9781475595741.001 Coibion, O., Gorodnichenko, Y., Kueng, L., & Silvia, J. (2012). Innocent bystanders? Monetary policy and inequality in the U.S. International Monitery Fund Working Paper Series, 1–55. Retrieved from https://www.imf.org/external/pubs/ft/wp/2012/wp12199.pdf Cram, J. A. (2017). Does human capital play a role in the growing income inequality in the OECD countries ? Senior Theses, Trinity College, Hartford. Retrieved from https://core.ac.uk/download/pdf/232744698.pdf Dabla-Norris, E., Kochhar, K., Ricka, F., Suphaphiphat, N., & Tsounta, E. (2015). Causes and consequences of income inequality: A global perspective. IMF Working Paper, 15(13), 1. doi:10.5089/9781513555188.006 Dendo, M., Suryowati, K., & Statistika, J. (2021). Pemodelan tingkat inflasi di Indonesia menggunakan regresi data panel dinamis dengan estimasi FD-GMM Deyshappriya, N. P. Arellano-Bond dan SYS-GMM Blundell-Bond. Jurnal Statistika Industri dan Komputasi, 06(02), 159–170. Deyshappriya, N. P. R. (2017). Impact of macroeconomic in Asian countries. Asian Development Bank Institute (ADBI), 696. Retrieved from https://www.adb.org/publications/impact-macroeconomic-factors-income-inequality-distribution Dilmaghani, A. K., & Tehranchian, A. M. (2015). The impact of monetary policies on the exchange rate: A GMM approach. Iranian Economic Review, 19(2), 177–191. Esmaeili, A., Mansouri, S., & Moshavash, M. (2011). Income inequality and population health in Islamic countries. Public Health, 125(9), 577–584. doi:10.1016/J.PUHE.2011.06.003 Fatoni, A., Herman, S., & Abdullah, A. (2019). Ibn Khaldun model on poverty: The case of Fatoni Organization of Islamic Conference (OIC) Countries. Journal of Islamic Monetary Economics and Finance, 5(2), 341–366. doi:10.21098/jimf.v5i2.1066 Fauziana, H., Wardhana, A. K., & Rusgianto, S. (2022). The effect of education, income, unemployment, and poverty toward the gini ratio in member of OIC Countries. Daengku: Journal of Humanities and Social Sciences Innovation, 2(2), 181–191. doi:10.35877/454RI.DAENGKU874 Figini, P., & Gorg, H. (2006). Does foreign direct investment affect wage inequality? An empirical investigation. SSRN Electronic Journal, 2336. doi:10.2139/ssrn.934507 Firdaus, M. (2020). Aplikasi ekonometrika dengan e-views, stata dan R (Edisi Pertama). Bogor: IPB Press. Galli, R., & Hoeven, R. Van Der. (2001). Is inflation bad for income inequality : The importance of the initial rate of inflation. Employment Paper 2001/29. International Labour Organization. Retrieved from International Labour Organization website Gründler, K., & Potrafke, N. (2019). Corruption and economic growth: New empirical evidence. European Journal of Political Economy, 60. doi:10.1016/J.EJPOLECO.2019.08.001 Gupta, S., Davoodi, H., & Alonso-Terme, R. (2002). Does corruption affect income inequality and poverty? Economics of Governance, 3(1), 23–45. doi:10.1007/s101010100039 Jensen, N. M., & Rosas, G. (2007). Foreign direct investment and income inequality in Mexico, 1990-2000. International Organization, 61(3), 467–487. doi:10.1017/S0020818307070178 Jhingan, M. L. (2018). Ekonomi pembangunan dan perencanaan (18th ed.). Jakarta: Rajawali. Khaldun, I. (2013). Mukaddimah (Tiga). Jakarta: Pustaka Al-Kausar. Kharlamova, G., Stavytskyy, A., & Zarotiadis, G. (2018). The impact of technological changes on income inequality: The EU states case study. Journal of International Studies, 11(2), 76–94. doi:10.14254/2071-8330.2018/11-2/6 King, L. P., & Váradi, B. (2002). Beyond Manichean economics: Foreign direct investment and growth in the transition from socialism. Communist and Post-Communist Studies, 35(1), 1–21. doi:10.1016/S0967-067X(01)00021-6 Kuncoro, M. (2010). Ekonomika pembangunan: Masalah, kebijakan, dan politik. Jakarta: Erlangga. Kuncoro, M. (2013). Mudah memahami dan menganalisis indikator ekonomi. Yogyakarta: Unit Penerbit Dan Percetakan STIM YKPN. Le, Q. H., Do, Q. A., Pham, H. C., & Nguyen, T. D. (2021). The impact of foreign direct investment on income inequality in Vietnam. Southeast Asian Journal of Economics, 9(1), 107–138. doi:10.3390/economies9010027 Lee, J.-W., & Lee, H. (2018). Human capital and income inequality. Asian Development Bank Institute (ADBI) Working Paper Series, 810. Retrieved from https://www.adb.org/sites/default/files/publication/401466/adbi-wp810.pdf Linawati, Y., Wibowo, M. G., Sunaryati, Wau, T., & Abduh, M. (2021). Financial deepening, macroeconomics, and income inequality in Indonesia: An autoregressive distributed lag approach. Journal of Research in Business and Management, 9(8), 23–32. Luan, Z., Zhou, Z., & Dhongde, S. (2017). The relationship between annual gdp growth and income inequality: developed and undeveloped countries. April, 1–18. Retrieved from https://core.ac.uk/download/pdf/84286492.pdf Maestri, V., & Roventini, A. (2012). Inequality and macroeconomic factors: A time-series analysis for a set of OECD Countries. SSRN Electronic Journal, 1–33. doi:10.2139/ssrn.2181399 Mahmooda, S., & Noorb, Z. M. (2015). Effect of human capital inequality and income inequality, estimated by Generalized Method of Moment (GMM). Asia Pacific Journal of Advanced Business and Social Studies, 1(1), 62–71. Mangkoesoebroto. (1993). Ekonomi publik (3rd ed.). Yogyakarta: Penerbit Buku Bhakti Profesindo (BPFE). Mihaylova, S. (2015). Foreign direct investment and income inequality in Central and Eastern Europe. Theoretical and Applied Economics, 22(2), 23–42. Mileva, E. (2007). Using Arellano–Bond dynamic panel GMM estimators in stata. Economics Department Fordham University, 55–92. Mohamad, N. M., Masron, T. A., Wijayanti, R., & Jamil, M. M. (2020). Islamic banking and income inequality: The role of corporate social responsibility. Jurnal Ekonomi Malaysia, 54(2), 77-90. doi:10.17576/JEM-2020-5402-07 Munir, K., & Kanwal, A. (2020). Impact of educational and gender inequality on income and income inequality in South Asian countries. International Journal of Social Economics, 47(8), 1043–1062. doi:10.1108/IJSE-04-2020-0226 Pan-Long, T. (1995). Foreign direct investment and income inequality: Further evidence. World Development, 23(3), 469–483. doi:10.1016/0305-750X(95)00136-Z Krugman, P., & Obstfeld, M. (2004). Ekonomi Internasional (5th ed.). Jakarta: Erlangga. Ravinthirakumaran, K., & Ravinthirakumaran, N. (2018). The impact of foreign direct investment on income inequality: A panel autogressive distributed lag approach for the asia-pacific economic cooperation developing economies. Asia-Pacific Sustainable Development Journal, 25(1), 57–84. doi:10.18356/d30b620b-en Rego, P. D. A. N. de S. (2021). The impact of corruption on income inequality: The role of the political regime. Social Sciences:Economics and Business, Repository University of Porto, 981–993. Roodman, D. (2009). How to do xtabond2: An introduction to difference and system GMM in stata. The Stata Journal: Promoting Communications on Statistics and Stata, 9(1), 86–136. doi:10.1177/1536867X0900900106 Rusydiana, A. S. (2018). Menguji kausalitas antarvariabel ekonomi dan politik: Ibn Khaldun theory on wealth. Jurnal Syarikah : Jurnal Ekonomi Islam, 4(1), 49-58. doi:10.30997/jsei.v4i1.1031 Samuelson, P. A., & Nordhaus, W. D. (1985). Ekonomi (12th ed.). Jakarta: Erlangga. Saputri, S., & Wibowo, M. G. (2018). Determinan pembiayaan UMKM di Indonesia tahun 2011-2015: Pendekatan generalized method of moment (GMM). Al-Amwal: Jurnal Kajian Ekonomi dan Perbankan Syari’ah, 10(1), 32–47. doi: 10.24235/amwal.v10i1.2809 Sheikh, M. R., Ashraf, A., Naheed, K., & Tufail, A. (2022). Economic openness, democracy and income inequality nexus in OIC countries. Harf-o-Sukhan: Scholarly Research Journal, 6(2), 24–33. Stack, S. (1978). The effect of direct government involvement in the economy on the degree of income inequality: A cross-national study. American Sociological Review, 43(6), 880-888. doi:10.2307/2094627 Suanes, M. (2016). Foreign direct investment and income inequality in Latin America: A sectoral analysis. CEPAL Review, 2016(118), 45–61. doi:10.18356/13c68e36-en Sukirno, S. (2013). Makro ekonomi teori pengantar (3rd ed.). Jakarta: Rajawali. Thalassinos, E., Uǧurlu, E., & Muratoǧlu, Y. (2012). Income inequality and inflation in the EU. European Research Studies Journal, 15(1), 127–140. Todaro, M. P. (2003a). Pembangunan Ekonomi di Dunia Ketiga. In 1 (6th Edition). Jakarta: Erlangga. Todaro, M. P. (2003b). Pembangunan Ekonomi Di Dunia Ketiga. In 2 (6th Edition). Jakarta: Erlangga. Todaro, M., & Smith, S. C. (2012). Economic Development (11th edition). Boston: Addison-Wesley. Transparency International. (2023). Corruption perceptions index 2022. Retrieved from www.transparency.org/cpi Ulu, M. İ. (2018). The effect of government social spending on income inequality in OECD: A panel data analysis. International Journal of Economics Politics Humanities and Social Sciences, 1(3), 184–202. UNESCO INSTITUTE For STATISTICS. (2013). UIS methodology for estimation of mean years of schooling. Retrieved from http://www.uis.unesco.org Wang, Y., & Li, H. (2017). An empirical study on the impact of educational gap on income gap. Proceedings of 2017 International Conference on Education Science and Economic Management (ICESEM 2017), 560–563. doi:10.2991/icesem-17.2017.127 Wicaksono, E., Amir, H., & Nugroho, A. (2017). The source of income inequality in Indonesia: a regression-based inequality decomposition. ADBI Working Paper, 667, 1–16. Retrieved from https://www.adb.org/publications/sources-income-inequality-indonesia World Bank. (2022). Gini index data. World Bank. Retrieved from https://data.worldbank.org/indicator/SI.POV.GINI World Inequality Database. (2020). Data - WID - World Inequality Database. World Inequality Database. Retrieved from https://wid.world/data/
This study aimed to determine the factors that influence the level of income inequality in member countries of the Organization of Islamic Cooperation (OC). The research period used was from 2012 to 2021, using the System Generalized Method of Moment (GMM) analysis tool. The variables used consist of the Gini ratio (proxy of income inequality), economic growth, Foreign Direct Investment (FDI), inflation, the average length of schooling (human capital proxy), and corruption perception index (sharia proxy). The results showed that sharia, human, and inflation variables had a negative effect, while economic growth and FDI had a positive and significant effect on income inequality in OIC countries. These results show that in addition to economic factors and human capital, sharia elements cannot be released in overcoming income inequality in OIC countries. Sharia is a driving factor in a more even distribution of income. Keywords: Income Inequality, Organization of Islamic Cooperation (OIC), System Generalized Method of Moment (GMM), Sharia ABSTRAK Penelitian ini bertujuan untuk mengetahui faktor-faktor yang mempengaruhi tingkat ketimpangan pendapatan di negara anggota Organization of Islamic Cooperation (OIC). Periode penelitian yang digunakan adalah dari tahun 2012 sampai dengan tahun 2021, dengan menggunakan alat analisis System Generalized Method of Moment (GMM). Variabel yang digunakan terdiri dari rasio gini (proksi ketimpangan pendapatan), pertumbuhan ekonomi, Foreign Direct Investment (FDI), inflasi, rata-rata lama sekolah (proksi human capital), dan indeks persepsi korupsi (proksi syariah). Hasil penelitian menunjukkan bahwa variabel syariah, human, dan inflasi berpengaruh negatif, sedangkan pertumbuhan ekonomi dan FDI berpengaruh positif dan signifikan terhadap ketimpangan pendapatan di negara-negara OIC. Hasil ini menunjukkan bahwa selain faktor ekonomi dan human capital unsur syariah tidak bisa dilepaskan dalam mengatasi ketimpangan pendapatan di negara OIC. Syariah menjadi faktor pendorong dalam distribusi pendapatan yang lebih merata. Kata kunci: Ketimpangan Pendapatan, Organization of Islamic Cooperation (OIC), System Generalized Method of Moment (GMM), Syariah REFERENCES Abdulkarim, F. M., & Ali, H. S. (2019). Financial inclusions, financial stability, and income inequality in oic countries: A GMM and quantile regression application. Journal of Islamic Monetary Economics and Finance, 5(2), 419–438. doi:10.21098/jimf.v5i2.1069 Alamanda, A. (2021). The effect of economic growth on income inequality: Panel data analysis from fifty countries. Info Artha, 5(1), 1–10. doi:10.31092/jia.v5i1.1176 Anto, M., H. (2011). Introducing an Islamic Human Development Index (I-HDI) to measure development in OIC countries. Islamic Economic Studies, 19(2), 69–95. Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte carlo evidence and an application to employment equations. Review of Economic Studies, 58(2), 277–297. doi:10.2307/2297968 Arellano, M., & Bond, S. (1998). Dynamic panel data estimation using DPD98: A guide for users. Manuscript, Oxford University. Auda, H. (2013). Novel symmetry tests in regression models based on gini mean difference. Metron, 71(1), 21–32. doi:10.1007/S40300-013-0004-1 Badriah, L. S. (2019). Ketimpangan distribusi pendapatan kaitannya dengan pertumbuhan ekonomi dan kemiskinan serta faktor-faktor yang mempengaruhinya. Sustainable Competitive Advantage (SCA-9) FEB UNSOED, 9(1), 232–248. Balseven, H., & Tugcu, C. T. (2017). Analyzing the effects of fiscal policy on income distribution: A comparison between developed and developing countries. International Journal of Economics and Financial Issues, 7(2), 377–383. Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1), 115–143. doi:10.1016/S0304-4076(98)00009-8 Boediono. (2011). Pengantar ilmu ekonomi: Ekonomi makro (Empat). Yogyakarta: Penerbit Buku Bhakti Profesindo (BPFE). Bouincha, M., & Karim, M. (2018). Income inequality and economic growth: An analysis using a panel data. International Journal of Economics and Finance, 10(5), 242-253. doi:10.5539/ijef.v10n5p242 Bucevska, V. (2020). Determinants of income inequality in EU candidate countries: A panel analysis. Economic Themes, 57(4), 397–413. doi:10.2478/ethemes-2019-0023 Bulir, A. (1998). Income inequalities: Does inflation matter? IMF Staff Papers, 21–34. doi:10.2307/4621662 Chancel, L., Piketty, T., Saez, E., & Zucman, G. (2022). World inequality report 2022. Retrieved from World Inequality Database website Chapra, M. U. (1993). Islamic and economic development. Islamabat: The Internasional Institute of Islamic Thought. Chapra, M. U. (2008). Ibn Khaldun’s theory of development: Does it help explain the low performance of the present-day muslim world? Journal of Socio-Economics, 37(2), 836–863. doi:10.1016/j.socec.2006.12.051 Checchi, D. (2001). Education, inequality and income inequality. LSE STICERD Research Paper, 52. Coady, D., & Dizioli, A. (2017). Income inequality and education revisited: Persistence, endogeneity, and heterogeneity. IMF Working Papers, 17(126), 1. doi: 10.5089/9781475595741.001 Coibion, O., Gorodnichenko, Y., Kueng, L., & Silvia, J. (2012). Innocent bystanders? Monetary policy and inequality in the U.S. International Monitery Fund Working Paper Series, 1–55. Retrieved from https://www.imf.org/external/pubs/ft/wp/2012/wp12199.pdf Cram, J. A. (2017). Does human capital play a role in the growing income inequality in the OECD countries ? Senior Theses, Trinity College, Hartford. Retrieved from https://core.ac.uk/download/pdf/232744698.pdf Dabla-Norris, E., Kochhar, K., Ricka, F., Suphaphiphat, N., & Tsounta, E. (2015). Causes and consequences of income inequality: A global perspective. IMF Working Paper, 15(13), 1. doi:10.5089/9781513555188.006 Dendo, M., Suryowati, K., & Statistika, J. (2021). Pemodelan tingkat inflasi di Indonesia menggunakan regresi data panel dinamis dengan estimasi FD-GMM Deyshappriya, N. P. Arellano-Bond dan SYS-GMM Blundell-Bond. Jurnal Statistika Industri dan Komputasi, 06(02), 159–170. Deyshappriya, N. P. R. (2017). Impact of macroeconomic in Asian countries. Asian Development Bank Institute (ADBI), 696. Retrieved from https://www.adb.org/publications/impact-macroeconomic-factors-income-inequality-distribution Dilmaghani, A. K., & Tehranchian, A. M. (2015). The impact of monetary policies on the exchange rate: A GMM approach. Iranian Economic Review, 19(2), 177–191. Esmaeili, A., Mansouri, S., & Moshavash, M. (2011). Income inequality and population health in Islamic countries. Public Health, 125(9), 577–584. doi:10.1016/J.PUHE.2011.06.003 Fatoni, A., Herman, S., & Abdullah, A. (2019). Ibn Khaldun model on poverty: The case of Fatoni Organization of Islamic Conference (OIC) Countries. Journal of Islamic Monetary Economics and Finance, 5(2), 341–366. doi:10.21098/jimf.v5i2.1066 Fauziana, H., Wardhana, A. K., & Rusgianto, S. (2022). The effect of education, income, unemployment, and poverty toward the gini ratio in member of OIC Countries. Daengku: Journal of Humanities and Social Sciences Innovation, 2(2), 181–191. doi:10.35877/454RI.DAENGKU874 Figini, P., & Gorg, H. (2006). Does foreign direct investment affect wage inequality? An empirical investigation. SSRN Electronic Journal, 2336. doi:10.2139/ssrn.934507 Firdaus, M. (2020). Aplikasi ekonometrika dengan e-views, stata dan R (Edisi Pertama). Bogor: IPB Press. Galli, R., & Hoeven, R. Van Der. (2001). Is inflation bad for income inequality : The importance of the initial rate of inflation. Employment Paper 2001/29. International Labour Organization. Retrieved from International Labour Organization website Gründler, K., & Potrafke, N. (2019). Corruption and economic growth: New empirical evidence. European Journal of Political Economy, 60. doi:10.1016/J.EJPOLECO.2019.08.001 Gupta, S., Davoodi, H., & Alonso-Terme, R. (2002). Does corruption affect income inequality and poverty? Economics of Governance, 3(1), 23–45. doi:10.1007/s101010100039 Jensen, N. M., & Rosas, G. (2007). Foreign direct investment and income inequality in Mexico, 1990-2000. International Organization, 61(3), 467–487. doi:10.1017/S0020818307070178 Jhingan, M. L. (2018). Ekonomi pembangunan dan perencanaan (18th ed.). Jakarta: Rajawali. Khaldun, I. (2013). Mukaddimah (Tiga). Jakarta: Pustaka Al-Kausar. Kharlamova, G., Stavytskyy, A., & Zarotiadis, G. (2018). The impact of technological changes on income inequality: The EU states case study. Journal of International Studies, 11(2), 76–94. doi:10.14254/2071-8330.2018/11-2/6 King, L. P., & Váradi, B. (2002). Beyond Manichean economics: Foreign direct investment and growth in the transition from socialism. Communist and Post-Communist Studies, 35(1), 1–21. doi:10.1016/S0967-067X(01)00021-6 Kuncoro, M. (2010). Ekonomika pembangunan: Masalah, kebijakan, dan politik. Jakarta: Erlangga. Kuncoro, M. (2013). Mudah memahami dan menganalisis indikator ekonomi. Yogyakarta: Unit Penerbit Dan Percetakan STIM YKPN. Le, Q. H., Do, Q. A., Pham, H. C., & Nguyen, T. D. (2021). The impact of foreign direct investment on income inequality in Vietnam. Southeast Asian Journal of Economics, 9(1), 107–138. doi:10.3390/economies9010027 Lee, J.-W., & Lee, H. (2018). Human capital and income inequality. Asian Development Bank Institute (ADBI) Working Paper Series, 810. Retrieved from https://www.adb.org/sites/default/files/publication/401466/adbi-wp810.pdf Linawati, Y., Wibowo, M. G., Sunaryati, Wau, T., & Abduh, M. (2021). Financial deepening, macroeconomics, and income inequality in Indonesia: An autoregressive distributed lag approach. Journal of Research in Business and Management, 9(8), 23–32. Luan, Z., Zhou, Z., & Dhongde, S. (2017). The relationship between annual gdp growth and income inequality: developed and undeveloped countries. April, 1–18. Retrieved from https://core.ac.uk/download/pdf/84286492.pdf Maestri, V., & Roventini, A. (2012). Inequality and macroeconomic factors: A time-series analysis for a set of OECD Countries. SSRN Electronic Journal, 1–33. doi:10.2139/ssrn.2181399 Mahmooda, S., & Noorb, Z. M. (2015). Effect of human capital inequality and income inequality, estimated by Generalized Method of Moment (GMM). Asia Pacific Journal of Advanced Business and Social Studies, 1(1), 62–71. Mangkoesoebroto. (1993). Ekonomi publik (3rd ed.). Yogyakarta: Penerbit Buku Bhakti Profesindo (BPFE). Mihaylova, S. (2015). Foreign direct investment and income inequality in Central and Eastern Europe. Theoretical and Applied Economics, 22(2), 23–42. Mileva, E. (2007). Using Arellano–Bond dynamic panel GMM estimators in stata. Economics Department Fordham University, 55–92. Mohamad, N. M., Masron, T. A., Wijayanti, R., & Jamil, M. M. (2020). Islamic banking and income inequality: The role of corporate social responsibility. Jurnal Ekonomi Malaysia, 54(2), 77-90. doi:10.17576/JEM-2020-5402-07 Munir, K., & Kanwal, A. (2020). Impact of educational and gender inequality on income and income inequality in South Asian countries. International Journal of Social Economics, 47(8), 1043–1062. doi:10.1108/IJSE-04-2020-0226 Pan-Long, T. (1995). Foreign direct investment and income inequality: Further evidence. World Development, 23(3), 469–483. doi:10.1016/0305-750X(95)00136-Z Krugman, P., & Obstfeld, M. (2004). Ekonomi Internasional (5th ed.). Jakarta: Erlangga. Ravinthirakumaran, K., & Ravinthirakumaran, N. (2018). The impact of foreign direct investment on income inequality: A panel autogressive distributed lag approach for the asia-pacific economic cooperation developing economies. Asia-Pacific Sustainable Development Journal, 25(1), 57–84. doi:10.18356/d30b620b-en Rego, P. D. A. N. de S. (2021). The impact of corruption on income inequality: The role of the political regime. Social Sciences:Economics and Business, Repository University of Porto, 981–993. Roodman, D. (2009). How to do xtabond2: An introduction to difference and system GMM in stata. The Stata Journal: Promoting Communications on Statistics and Stata, 9(1), 86–136. doi:10.1177/1536867X0900900106 Rusydiana, A. S. (2018). Menguji kausalitas antarvariabel ekonomi dan politik: Ibn Khaldun theory on wealth. Jurnal Syarikah : Jurnal Ekonomi Islam, 4(1), 49-58. doi:10.30997/jsei.v4i1.1031 Samuelson, P. A., & Nordhaus, W. D. (1985). Ekonomi (12th ed.). Jakarta: Erlangga. Saputri, S., & Wibowo, M. G. (2018). Determinan pembiayaan UMKM di Indonesia tahun 2011-2015: Pendekatan generalized method of moment (GMM). Al-Amwal: Jurnal Kajian Ekonomi dan Perbankan Syari’ah, 10(1), 32–47. doi: 10.24235/amwal.v10i1.2809 Sheikh, M. R., Ashraf, A., Naheed, K., & Tufail, A. (2022). Economic openness, democracy and income inequality nexus in OIC countries. Harf-o-Sukhan: Scholarly Research Journal, 6(2), 24–33. Stack, S. (1978). The effect of direct government involvement in the economy on the degree of income inequality: A cross-national study. American Sociological Review, 43(6), 880-888. doi:10.2307/2094627 Suanes, M. (2016). Foreign direct investment and income inequality in Latin America: A sectoral analysis. CEPAL Review, 2016(118), 45–61. doi:10.18356/13c68e36-en Sukirno, S. (2013). Makro ekonomi teori pengantar (3rd ed.). Jakarta: Rajawali. Thalassinos, E., Uǧurlu, E., & Muratoǧlu, Y. (2012). Income inequality and inflation in the EU. European Research Studies Journal, 15(1), 127–140. Todaro, M. P. (2003a). Pembangunan Ekonomi di Dunia Ketiga. In 1 (6th Edition). Jakarta: Erlangga. Todaro, M. P. (2003b). Pembangunan Ekonomi Di Dunia Ketiga. In 2 (6th Edition). Jakarta: Erlangga. Todaro, M., & Smith, S. C. (2012). Economic Development (11th edition). Boston: Addison-Wesley. Transparency International. (2023). Corruption perceptions index 2022. Retrieved from www.transparency.org/cpi Ulu, M. İ. (2018). The effect of government social spending on income inequality in OECD: A panel data analysis. International Journal of Economics Politics Humanities and Social Sciences, 1(3), 184–202. UNESCO INSTITUTE For STATISTICS. (2013). UIS methodology for estimation of mean years of schooling. Retrieved from http://www.uis.unesco.org Wang, Y., & Li, H. (2017). An empirical study on the impact of educational gap on income gap. Proceedings of 2017 International Conference on Education Science and Economic Management (ICESEM 2017), 560–563. doi:10.2991/icesem-17.2017.127 Wicaksono, E., Amir, H., & Nugroho, A. (2017). The source of income inequality in Indonesia: a regression-based inequality decomposition. ADBI Working Paper, 667, 1–16. Retrieved from https://www.adb.org/publications/sources-income-inequality-indonesia World Bank. (2022). Gini index data. World Bank. Retrieved from https://data.worldbank.org/indicator/SI.POV.GINI World Inequality Database. (2020). Data - WID - World Inequality Database. World Inequality Database. Retrieved from https://wid.world/data/
This paper examines the distribution of ‘money’ income of self-employed farm households in the U.S. using multiple inequality measures and multi-year data from Current Population Survey. Special emphasis is given to 2016 and 2020, which portray total household income before and during the onset of the Covid-19’s recession. The two selected years, respectively, characterize low and high farm income years, with their likely divergent impact on the well-being of self-employed farm households. Using the Gini index measure of inequality, findings show that money income was just as unequally distributed in 2020, the year of the Covid-19’s recession, as in 2016. Adopted decomposition method of the Gini index showed income from off-farm wages and/or salaries, in comparison to the other components of total income, with the strongest equalizing marginal impact on the overall distribution of money income. Considering that off-farm income from wages and/or salaries is the dominant income source of self-employed farm households, macroeconomic factors are likely to continue to influence the distribution of income among self-employed farm households. Key words: Covid-19’s recession, Current Population Survey, income inequality, inequality decomposition.JEL Classification: D31, D63, G51, I24, J43
Celem artykułu jest przedstawienie i przeanalizowanie wybranych czynników nierówności dochodowych związanych z rynkiem pracy, sytuacją społeczno-ekonomiczną, systemem podatkowym, globalizacją, wolnością oraz finansjalizacją w krajach postsocjalistycznych z obszaru Europy Środkowo-Wschodniej i Azji Centralnej w latach 1991–2019. W okresie transformacji gospodarczej nierówności dochodowe znacznie wzrosły na początku lat 90. XX w. Początkowy, gwałtowny wzrost współczynnika Giniego był częściowo oczekiwany ze względu na liczne zmiany instytucjonalne, wynikające z odejścia od systemu komunistycznego, ideologicznie utrzymującego nierówności na niskim poziomie, jednak w dłuższej perspektywie pogłębienie się rozwarstwienia dochodowego zależało od wypracowanego przez nowo powstałe instytucje podejścia, czynników zewnętrznych i samych warunków wstępnych transformacji. Jako metody badawcze wykorzystano analizę skupień metodą Warda, regresję przekrojową i panelową, analizę statystyczną oraz drzewo regresyjne z algorytmem CART. Uzyskane wyniki wskazują na występowanie kilku dominujących tendencji rozwojowych nierówności dochodowych na badanym obszarze i powiązanie warunków wstępnych transformacji gospodarczej z dalszym rozwojem współczynnika Giniego. Badanie pozwoliło również wyodrębnić najistotniejsze determinanty oraz przeanalizować zależności ich współwystępowania.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.