In this paper, we propose a new approach for the simulation-based support of tryout operations in deep drawing which can be schematically classified as automatic knowledge acquisition. The central idea is to identify information maximising sensor positions for draw-in as well as local blank holder force sensors by solving the column subset selection problem with respect to the sensor sensitivities. Inverse surrogate models are then trained using the selected sensor signals as predictors and the material and process parameters as targets. The final models are able to observe the drawing process by estimating current material and process parameters, which can then be compared to the target values to identify process corrections. The methodology is examined on an Audi A8L side panel frame using a set of 635 simulations, where 20 out of 21 material and process parameters can be estimated with an R2 value greater than 0.9. The result shows that the observational models are not only capable of estimating all but one process parameters with high accuracy, but also allow the determination of material parameters at the same time. Since no assumptions are made about the type of process, sensors, material or process parameters, the methodology proposed can also be applied to other manufacturing processes and use cases.