Electric field-induced transformation of incommensurate modulations in a Sn-modified lead zirconate titanate ceramic was investigated with an electric field in situ transmission electron microscopy technique. It is found that the spacing between the (1∕x){110} satellite spots and the fundamental reflections do not change with external electric field, indicating that the modulation wavelength stays constant under applied field. The intensity of these satellites starts to decrease when the field level reaches a critical value. Further increase in the field strength eventually leads to the complete disappearance of the satellite reflections. In addition, the 12{111}-type superlattice reflections showed no response to electrical stimuli.