Mucosal epithelia constitute the first barriers to be overcome by pathogens during infection. The induction of protective IgA in this location is important for the prevention of infection and can be achieved through different mucosal immunization strategies. Lactic acid bacteria have been tested in the last few years as live vectors for the delivery of antigens at mucosal sites, with promising results. In this work, Streptococcus pneumoniae PsaA antigen was expressed in different species of lactic acid bacteria, such as Lactococcus lactis, Lactobacillus casei, Lactobacillus plantarum, and Lactobacillus helveticus. After nasal inoculation of C57Bl/6 mice, their ability to induce both systemic (IgG in serum) and mucosal (IgA in saliva, nasal and bronchial washes) anti-PsaA antibodies was determined. Immunization with L. lactis MG1363 induced very low levels of IgA and IgG, possibly by the low amount of PsaA expressed in this strain and its short persistence in the nasal mucosa. All three lactobacilli persisted in the nasal mucosa for 3 days and produced a similar amount of PsaA protein (150-250 ng per 10(9) CFU). However, L. plantarum NCDO1193 and L. helveticus ATCC15009 elicited the highest antibody response (IgA and IgG). Vaccination with recombinant lactobacilli but not with recombinant L. lactis led to a decrease in S. pneumoniae recovery from nasal mucosa upon a colonization challenge. Our results confirm that certain Lactobacillus strains have intrinsic properties that make them suitable candidates for mucosal vaccination experiments.