Epstein-Barr virus (EBV), the cause of infectious mononucleosis, is involved in the pathogenesis of several human cancers, the highest frequency of association being found in undifferentiated nasopharyngeal carcinoma and endemic Burkitt's lymphoma. The development of animal models in which potential vaccines can be tested is important. EBV infection of the common marmoset, using the M81 strain originally derived from a patient with nasopharyngeal carcinoma, induces a carrier state in this animal. Persistent infection is characterized by the production of antibodies to viral antigens, and the secretion of EBV DNA into buccal fluids. Following immunization with envelope glycoprotein gp340 derived from a bovine papilloma virus expression vector, prior to EBV infection, viral DNA was detected significantly less frequently in the buccal fluids of immunized, than of nonimmunized, infected animals, indicating that although the carrier state had not been abolished, it had been altered. A reduction in virus load was also observed when offspring of seronegative, and on occasion seropositive, parents were immunized neonatally, before EBV challenge.