An incompressible smoothed particle hydrodynamics algorithm is proposed to model and investigate the thermal effect on the mixing rate of an active micromixer in which the rotating stirrers enhance the mixing rate. In liquids, mass diffusion increases with increasing temperature, while viscosity decreases; so, the local Schmidt number decreases considerably with increasing temperature. The present study investigates the effect of wall temperature on mixing rate with an improved SPH method. The robust SPH method used in the present work is equipped with a shifting algorithm and renormalization tensors. By introducing this new algorithm, the several mass, momentum, energy, and concentration equations are solved. The results, discussed for different temperature ratios, show that mixing rate increases significantly with increased temperature ratio.