Recent Applications in Data Clustering 2018
DOI: 10.5772/intechopen.74514
|View full text |Cite
|
Sign up to set email alerts
|

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust Data Segmentation

Abstract: Hard C-means (HCM) and fuzzy C-means (FCM) algorithms are among the most popular ones for data clustering including image data. The HCM algorithm offers each data entity with a cluster membership of 0 or 1. This implies that the entity will be assigned to only one cluster. On the contrary, the FCM algorithm provides an entity with a membership value between 0 and 1, which means that the entity may belong to all clusters but with different membership values. The main disadvantage of both HCM and FCM algorithms … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2022
2022

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 21 publications
0
0
0
Order By: Relevance