2024
DOI: 10.1038/s41598-024-51685-5
|View full text |Cite
|
Sign up to set email alerts
|

Incorporating longitudinal history of risk factors into atherosclerotic cardiovascular disease risk prediction using deep learning

Jingzhi Yu,
Xiaoyun Yang,
Yu Deng
et al.

Abstract: It is increasingly clear that longitudinal risk factor levels and trajectories are related to risk for atherosclerotic cardiovascular disease (ASCVD) above and beyond single measures. Currently used in clinical care, the Pooled Cohort Equations (PCE) are based on regression methods that predict ASCVD risk based on cross-sectional risk factor levels. Deep learning (DL) models have been developed to incorporate longitudinal data for risk prediction but its benefit for ASCVD risk prediction relative to the tradit… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 34 publications
0
0
0
Order By: Relevance