The production of waste is increasing yearly and, without a viable recycle or reutilization solution, waste is sent to landfills, where it can take thousand to years to degrade. Simultaneously, for the production of new materials, some industries continue to ignore the potential of wastes and keep on using natural resources for production. The incorporation of waste materials in mortars is a possible solution to avoid landfilling, through their recycling or reutilization. However, no evaluation of their “sustainability” in terms of environmental performance is available in the literature. In this sense, in this research a life cycle assessment was performed on mortars, namely renders, with incorporation of industrials wastes replacing sand and/or cement. For that purpose, eight environmental impact categories (abiotic depletion potential, global warming potential, ozone depletion potential, photochemical ozone creation potential, acidification potential, eutrophication potential, use of non-renewable primary energy resources, and use of renewable primary energy resources) within a “cradle to gate” boundary were analyzed for 19 mortars with incorporation of several industrial wastes: sanitary ware, glass fiber reinforced polymer, forest biomass ashes, and textile fibers. Sixteen out of the 19 mortars under analysis presented, in all environmental impact categories, an equal or better environment performance than a common mortar (used as a reference). The benefits in some environmental impacts were over 20%.