“…The application of deep learning and data-intelligent models has significantly reduced the cost of monitoring and assessment of water quality. Studies conducted include the prediction of pH in water (Egbueri & Agbasi, 2022b ; Huang et al, 2019 ; Son et al, 2021 ; Stackelberg et al, 2020 ), prediction of TDS in water (Egbueri & Agbasi, 2022b ; Jamei et al, 2020 ; Mehrdadi et al, 2012 ; Salmani & Jajaei, 2016 ), prediction of TH in water (Azad et al, 2018 ; Egbueri & Agbasi, 2022b ; Roy & Majumder, 2018 ), prediction of anions in water (Egbueri, 2021 ; Mousavi & Amiri, 2012 ; Wagh et al, 2017b ; Yesilnacar et al, 2008 ; Zare et al, 2011 ), prediction of cations in water (Aghel et al, 2019 ; Bondarev, 2019 ; Katimon et al, 2018 ; Nhantumbo et al, 2018 ; Subba Rao et al, 2022b ), prediction of metals in water (Alizamir & Sobhanardakani, 2017a , 2017b ; Egbueri, 2021 ; Fard et al, 2017 ; Ozel et al, 2020 ; Rooki et al, 2011 ), and prediction of water quality indices (Chia et al, 2022 ; Egbueri, 2022a , 2022b ).…”