Sonicated arsonoliposomes were prepared using arsonolipid with palmitic acid acyl chain (C16), mixed with phosphatidylcholine (PC)-based or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-based, and cholesterol (Chol) with C16/DSPC/Chol 8:12:10 molar ratio. PEG-lipid (1,2-distearoyl-sn-glycero-3-phosphoethanolamine conjugated to polyethylenoglycol 2000) containing vesicles (PEGylated-arsonoliposomes; PC-based and DSPC-based) were also prepared. The cytotoxicity of these arsonoliposomes towards different cancer cells (human promyelocytic leukaemia NB4, Prostatic cancer PC3, human breast adenocarcinoma MDA-MB-468, human T-lymphocyte (MT-4) and also towards human umbilical vein endothelial cells (HUVECs) was evaluated by calculating the arsonoliposome-induced growth inhibition of the cells by the MTT assay. IC-50 values were interpolated from cell number/arsonoliposome concentration curves. The results reveal that all types of arsonoliposomes evaluated significantly inhibit the growth of most of the cancer cells studied (PC3, NB4, MT4) with the exception of the MDA-MB-468 breast cancer cells which were minimally affected by arsonoliposomes; in some cases even less than HUVEC. Nevertheless, for the same cell type the differences between the different types of arsonoliposomes were significant but not proportional to their stability, indicating that the formation of arsonoliposomes with very stable membranes is not a problem for their anticancer activity. Thereby it is concluded that arsonoliposome composition should be adjusted in accordance to their in vivo kinetics and the desired, for each specific application, biodistribution of As and/or encapsulated drug.