“…Artificial neural network (ANN) (Haykin, 1999; Fausett, 2008) is a proven tool for developing predictive models for complex material systems (Datta and Chattopadhyay, 2013; Datta, 2016; Sinha et al , 2013; Kondo et al , 2017), including steel (Mohanty et al , 2009; Kundu et al , 2009; Ghosh et al , 2009; Lu, van der Zwaag and Xu, 2017; Razavi et al , 2016). For designing new alloys with targeted microstructure, various attempts have been made in predicting austenite transformation using ANN models with chemical composition, austenitizing temperature and CR as input parameters for transformation (Trzaska and Dobrza’nski, 2007; Wang et al , 1999; Dobrza’nski and Trzaska, 2004; Wei et al , 2007; Vermeulen et al , 1996; Chakraborty et al , 2017). From the perspective of the domain knowledge of materials engineering, data-driven modeling has an inherent problem.…”