Renal anemia is treated with erythropoiesis-stimulating agents (ESAs), even though epoetin alfa and darbepoetin increase the risk of cardiovascular death and thromboembolic events, including stroke. Hypoxia-inducible factor prolyl hydroxylase domain (HIF-PHD) inhibitors have been developed as an alternative to ESAs, producing comparable increases in hemoglobin. However, in advanced chronic kidney disease, HIF-PHD inhibitors can increase the risk of cardiovascular death, heart failure, and thrombotic events to a greater extent than that with ESAs, indicating that there is a compelling need for safer alternatives. Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of major cardiovascular events, and they increase hemoglobin, an effect that is related to an increase in erythropoietin and an expansion in red blood cell mass. SGLT2 inhibitors increase hemoglobin by ≈0.6–0.7 g/dL, resulting in the alleviation of anemia in many patients. The magnitude of this effect is comparable to that seen with low-to-medium doses of HIF-PHD inhibitors, and it is apparent even in advanced chronic kidney disease. Interestingly, HIF-PHD inhibitors act by interfering with the prolyl hydroxylases that degrade both HIF-1α and HIF-2α, thus enhancing both isoforms. However, HIF-2α is the physiological stimulus to the production of erythropoietin, and upregulation of HIF-1α may be an unnecessary ancillary property of HIF-PHD inhibitors, which may have adverse cardiac and vascular consequences. In contrast, SGLT2 inhibitors act to selectively increase HIF-2α, while downregulating HIF-1α, a distinctive profile that may contribute to their cardiorenal benefits. Intriguingly, for both HIF-PHD and SGLT2 inhibitors, the liver is likely to be an important site of increased erythropoietin production, recapitulating the fetal phenotype. These observations suggest that the use of SGLT2 inhibitors should be seriously evaluated as a therapeutic approach to treat renal anemia, yielding less cardiovascular risk than other therapeutic options.