The controversial wear resistance limits the application of the nitro-chromizing process, which is a potential advanced chromizing strategy with a low chromizing temperature and thick strengthening layer. In this study, additional carburizing was proposed to optimize the nitro-chromizing process and the associated wear resistance. Samples of carbon steel were used to evaluate the optimized nitro-chromizing, normal nitro-chromizing, and other relevant processes. Comparative analyses were conducted through XRD composition analysis, microstructure observations, and mechanical property tests.The results confirm that the normal nitro-chromized sample has poor wear resistance due to severe abrasive wear, while the wear rate of the optimized nitro-chromized sample is only about 1/15 of that of the normal nitro-chromized sample. Both the above two samples have similar main phase compositions of Cr2N and Cr7C3. However, the optimized nitro-chromized sample exhibits a lower friction coefficient and better adhesion strength than the normal nitro-chromized sample. The additional carburizing induces the formation of massive fine graphite sheets deposited on porous nitriding structures, which can be in charge of the low friction coefficient and good adhesion strength.