Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Abstract. The Mediterranean basin has experienced one of the highest warming rates on Earth over the last decades and climate projections anticipate water-scarcity future scenarios. Mid-latitude Mediterranean mountain areas such as the Pyrenees play a key role in the hydrological resources for intensely populated lowland areas. However, there are still large uncertainties about the impact of climate change on the snowpack in high mountain ranges of the Mediterranean region. Here, we provide a climate sensitivity analysis of the Pyrenean snowpack through five key snow climate indicators. Snow sensitivity is analyzed during compound temperature and precipitation extreme seasons, namely Cold-Dry (CD), Cold-Wet (CW), Warm-Dry (WD) and Warm-Wet (WW) seasons, for low (1500 m), mid (1800 m) and high (2400 m) elevation sectors of the Pyrenees. To this end, a physically-based energy and mass balance snow model (FSM2) is validated by ground-truth data, and subsequently applied to the entire range, forcing perturbed reanalysis climate data for the 1980–2019 baseline scenario. The results have shown that FSM2 successfully reproduces the observed snow depth (HS) values, reaching R2 > 0.8, and relative RMSE and MAE lower than 10 % of the observed HS. Overall, climate sensitivity decreases with elevation and increases towards the eastern Pyrenees. When temperature is progressively warmed at 1 ºC intervals, the largest seasonal HS decreases from baseline climate are found at +1 ºC, reaching values of -47 %, -48 % and -25 % for low, mid and high elevations, respectively. Only an upward trend of precipitation (+10 %) could counterbalance temperature increases (<= 1 ºC) at high elevations during the coldest months of the season, since temperature is far from the isothermal 0 ºC conditions. The maximum (minimum) seasonal HS and peak HS max reductions are observed on WW (CD) seasons. During the latter seasons, the seasonal HS is expected to be reduced by -37 % (- 28 %), -34 % (- 30 %), -27 % (-22 %) per ºC, at low, mid and high elevation areas, respectively. For snow ablation climate indicators, the largest decreases are observed during WD seasons, when the peak HS date is anticipated 10 days and snow duration (ablation) decreases (increases) 12 % per ºC. The results suggest similar climate sensitivities in mid-latitude mountain areas; where significant snowpack reductions are anticipated, with relevant consequences in the ecological and socioeconomic systems.
Abstract. The Mediterranean basin has experienced one of the highest warming rates on Earth over the last decades and climate projections anticipate water-scarcity future scenarios. Mid-latitude Mediterranean mountain areas such as the Pyrenees play a key role in the hydrological resources for intensely populated lowland areas. However, there are still large uncertainties about the impact of climate change on the snowpack in high mountain ranges of the Mediterranean region. Here, we provide a climate sensitivity analysis of the Pyrenean snowpack through five key snow climate indicators. Snow sensitivity is analyzed during compound temperature and precipitation extreme seasons, namely Cold-Dry (CD), Cold-Wet (CW), Warm-Dry (WD) and Warm-Wet (WW) seasons, for low (1500 m), mid (1800 m) and high (2400 m) elevation sectors of the Pyrenees. To this end, a physically-based energy and mass balance snow model (FSM2) is validated by ground-truth data, and subsequently applied to the entire range, forcing perturbed reanalysis climate data for the 1980–2019 baseline scenario. The results have shown that FSM2 successfully reproduces the observed snow depth (HS) values, reaching R2 > 0.8, and relative RMSE and MAE lower than 10 % of the observed HS. Overall, climate sensitivity decreases with elevation and increases towards the eastern Pyrenees. When temperature is progressively warmed at 1 ºC intervals, the largest seasonal HS decreases from baseline climate are found at +1 ºC, reaching values of -47 %, -48 % and -25 % for low, mid and high elevations, respectively. Only an upward trend of precipitation (+10 %) could counterbalance temperature increases (<= 1 ºC) at high elevations during the coldest months of the season, since temperature is far from the isothermal 0 ºC conditions. The maximum (minimum) seasonal HS and peak HS max reductions are observed on WW (CD) seasons. During the latter seasons, the seasonal HS is expected to be reduced by -37 % (- 28 %), -34 % (- 30 %), -27 % (-22 %) per ºC, at low, mid and high elevation areas, respectively. For snow ablation climate indicators, the largest decreases are observed during WD seasons, when the peak HS date is anticipated 10 days and snow duration (ablation) decreases (increases) 12 % per ºC. The results suggest similar climate sensitivities in mid-latitude mountain areas; where significant snowpack reductions are anticipated, with relevant consequences in the ecological and socioeconomic systems.
The temporal concentration of snowfalls has direct implications on the management of water resources as well as on the economic activity of mountain areas, conditioning, for example, the seasonal performance of ski resorts. This work uses the daily concentration index (CI) for analysing the frequency concentration of snowfalls in the Iberian Peninsula Mountain ranges. First, we provide a spatiotemporal analysis of the CI patterns and trends for the 1980–2014 period. Subsequently, we determine the atmospheric circulation patterns that control the CI variability. In addition, we determine the geographical and low‐frequency climate modes that control the CI for this mid‐latitude area. In addition, we have estimated the partial dependence relationship between the CI and several geographical factors by fitting a multiple linear regression. The results from these analyses show that elevation as well as the distance from the Atlantic are the main geographical pattern that controls the CI in the Iberian Peninsula Mountain ranges. These geographical factors also reflect the role of the main atmospheric circulation patterns in the Iberian Peninsula in controlling the spatial dynamics of the CI. The Cantabrian, Iberian, and northern slopes of the Pyrenees show the lowest CI due to their exposition to northern and Atlantic circulation weather types. On the contrary, the highest CI values are found in the southern and eastern slopes of the Pyrenees, eastern slopes of Sierra Nevada, and southern slopes of the Central system. Trend analysis shows a slight increase of CI in the Central system and in the western Sierra Nevada. However, eastern Sierra Nevada, Cantabrian, Central, and Iberian show a downward CI trend. CI is principally driven by the East‐Atlantic/Western Russia pattern and the North Atlantic Oscillation (NAO) in the Cantabrian, Iberian, and northern slopes of the Central range. The CI values in the Pyrenees show a different relationship with the Western Mediterranean Oscillation (WeMO) depending on whether it is the southern or the northern slope. In addition, the positive phase of the NAO oscillation controls the higher values of CI for the whole Pyrenees, especially in the mid‐south part. Finally, in Sierra Nevada the CI dynamics are controlled mostly by the WeMO.
Small glaciers are one of the best indicators of climatic variations and their short‐term effects. Located in the Spanish Pyrenees, the Maladeta is one of these glaciers. Its systematic observation began in the 1980s, being one of the few Pyrenean glaciers with a tongue‐shaped front. This study presents the evolution of the Maladeta glacial tongue over a decade (2010–2020) through multiple geomatic techniques. Surveys have ranged from Total Stations and Global Navigation Satellite System devices to massive data capture techniques such as Terrestrial Laser Scanners or Unmanned Aerial Vehicles photogrammetry. The aim is to analyze in detail the loss of surface area and thickness of the glacier and its transition from being a glacier with a tongue partially determined by climate to a topoclimatically determined cirque glacier. The results reveal a tongue retreat of over 5 m/yr and area losses of over 0.2 ha/yr, along with ice thickness and volume losses of −1.7 m/yr and over −21 × 103 m3/yr, respectively. If this trend continues, the tongue, and possibly the Maladeta glacier, could disappear by the end of the 2030s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.