3-Nitrotyrosine (3-NT) is a useful biomarker of increasing oxidative stress and protein nitration during biological aging. The proteomic analysis of cerebellar homogenate from Fisher 344/Brown Norway (BN/F1) rats shows an age-dependent increase in protein nitration, monitored by western-blot analysis after two-dimensional gel electrophoresis (2DE), mainly in the acidic region. Analysis of in-gel digests by nanoelectrospray (NSI)-MS/MS resulted in the identification of 16 putatively nitrated proteins. The selective isolation of nitrated proteins using immunoprecipitation, followed by SDS-PAGE and in-gel digest/NSI-MS/MS analysis led to the identification of 22 putatively nitrated proteins, of which 7 were identical to those detected after 2DE. When proteins were separated by solution isoelectrofocusing and analyzed by NSI MS/MS, we obtained MS/MS spectra of 3-NT containing peptides of four proteins -similar to ryanodine receptor 3, low density lipoprotein related receptor 2, similar to nebulin-related anchoring protein isoform C and 2,3 cyclic nucleotide 3-phosphodiesterase. Although the functional consequences of protein nitration for these targets are not yet known, our proteomic experiments serve as a first screen for the more targeted analysis of nitrated proteins from aging cerebellum for functional characterization. Oxidative stress and biological aging contribute to elevated levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), causing reversible as well as irreversible covalent protein modifications (Oliver et al.