Although aging-induced changes in urinary bladder neurotransmission have been studied in some detail, information regarding alterations in detrusor muscle is scanty and addresses only partial aspects of the myogenic response of detrusor. Rodent bladder aging shows several features similar to those reported in humans. The aim of this study was to characterize in aged mouse the alterations of detrusor muscle contraction and the putative underlying changes in Ca(2+) signals. We studied in vitro the myogenic contraction induced by agonists in detrusor strips from adult (3 months old) or aged (23-25 months old) mice. In addition, we determined the agonist-induced [Ca(2+)](i) signals by epifluorescence microscopy in fura-2 loaded isolated detrusor cells. Aging impaired the contractile response of bladder strips to cholinergic stimulation with bethanechol and to chemical depolarization with KCl-containing solutions. On the contrary, the response to purinergic stimulation (ATP) was enhanced. Aging also diminished the transient Ca(2+) signal evoked by bethanechol and the Ca(2+) influx induced by KCl in bladder strips. Treatments aimed to release calcium from intracellular stores (caffeine and a low level of ionomycin in Ca(2+)-free medium) showed that aging reduces the size of agonist-releasable stores. Similar to contraction, the mobilization of Ca(2+) by ATP was increased in aged cells. Therefore, the differential effects of aging on detrusor contraction are associated to alterations of [Ca(2+)](i) signals: the cholinergic inhibition is due to inhibition of voltage-operated Ca(2+) influx and reduction of the size of intracellular Ca(2+) stores, while the age-induced ATP response is accompanied by an enhanced Ca(2+) mobilization.