Abstract:The thermodynamic efficiency of internal combustion engines is dependent on the compression ratio and specific heat ratio of the working fluid. Using a mixture of oxygen and noble gases instead of air can increase the thermal efficiency due to their higher specific heat ratio. It also has advantage of eliminating NOx caused by lack of nitrogen. In this study, the three dimensional turbulent injection of hydrogen into a constant volume combustion chamber has been modeled and compared to mixtures of oxygen with nitrogen, argon and xenon. All conditions including the mass flow rate of the injected fuel, injection velocity, and initial temperature and pressure of the chamber were kept constant. The results indicate that the hydrogen jet has more penetration length in nitrogen compared to argon and xenon. However, the smaller penetration lengths lead to more complex jet shapes and larger cone angles. In combination with the higher specific heat ratio, combustion in a noble gas environment results in higher temperatures and OH radical concentrations. Furthermore, mixedness is investigated using mean spatial variation and mean scalar dissipation. Hydrogen in argon shows a better mixing rate compared to nitrogen and xenon due to higher diffusivity.