The surface receptor triggering receptor expressed on myeloid cells 2 (TREM2) plays a crucial role in maintaining a multitude of microglial activities, such as survival, proliferation, migration, metabolism, inflammation, and phagocytosis. However, the molecular mechanisms underlying TREM2-mediated microglial activities remain largely elusive. Herein, we found that TREM2 interacted with the type I transmembrane protein TMEM59, whose expression could facilitate autophagic flux through its carboxyl-terminus. TMEM59 expression was decreased upon lipopolysaccharide treatment. While downregulation of TMEM59 promoted anti-inflammatory factor expression and attenuated lipopolysaccharide treatment-induced inflammation. Importantly, we found that overexpression of TREM2 reduced TMEM59 protein levels through promoting its degradation, whereas TMEM59 levels were elevated in Trem2deficient microglia. Finally, impaired survival, proliferation, migration, and phagocytosis, as well as dysregulated autophagy and metabolism in Trem2-deficient microglia were attenuated upon TMEM59 silencing. Together, our findings reveal a novel function of TREM2 in mediating TMEM59 protein degradation and demonstrate the importance of TMEM59 homeostasis in maintaining TREM2-mediated microglial activities.