Increased force and elastic energy storage are not the mechanisms that improve jump performance with accentuated eccentric loading during a constrained vertical jump
Eric Yung-Sheng Su,
Timothy J. Carroll,
Dominic J. Farris
et al.
Abstract:ObjectiveAccentuated eccentric loading (AEL) involves higher load applied during the eccentric phase of a stretch-shortening cycle movement, followed by a sudden removal of load before the concentric phase. Previous studies suggest that AEL enhances human countermovement jump performance, however the mechanism is not fully understood. Here we explore whether isolating additional load during the countermovement is sufficient to increase ground reaction force, and hence elastic energy stored, at the start of the… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.