Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and
their redistribution among the atmosphere, ocean, and terrestrial biosphere
– the “global carbon budget” – is important to better understand the
global carbon cycle, support the development of climate policies, and
project future climate change. Here we describe data sets and methodology to
quantify the five major components of the global carbon budget and their
uncertainties. Fossil CO2 emissions (EFF) are based on energy
statistics and cement production data, while emissions from land use change
(ELUC), mainly deforestation, are based on land use and land use change
data and bookkeeping models. Atmospheric CO2 concentration is measured
directly and its growth rate (GATM) is computed from the annual changes
in concentration. The ocean CO2 sink (SOCEAN) and terrestrial
CO2 sink (SLAND) are estimated with global process models
constrained by observations. The resulting carbon budget imbalance
(BIM), the difference between the estimated total emissions and the
estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a
measure of imperfect data and understanding of the contemporary carbon
cycle. All uncertainties are reported as ±1σ. For the last
decade available (2009–2018), EFF was 9.5±0.5 GtC yr−1,
ELUC 1.5±0.7 GtC yr−1, GATM 4.9±0.02 GtC yr−1 (2.3±0.01 ppm yr−1), SOCEAN 2.5±0.6 GtC yr−1, and SLAND 3.2±0.6 GtC yr−1, with a budget
imbalance BIM of 0.4 GtC yr−1 indicating overestimated emissions
and/or underestimated sinks. For the year 2018 alone, the growth in EFF was
about 2.1 % and fossil emissions increased to 10.0±0.5 GtC yr−1, reaching 10 GtC yr−1 for the first time in history,
ELUC was 1.5±0.7 GtC yr−1, for total anthropogenic
CO2 emissions of 11.5±0.9 GtC yr−1 (42.5±3.3 GtCO2). Also for 2018, GATM was 5.1±0.2 GtC yr−1 (2.4±0.1 ppm yr−1), SOCEAN was 2.6±0.6 GtC yr−1, and SLAND was 3.5±0.7 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 407.38±0.1 ppm averaged over 2018. For 2019, preliminary data for the first 6–10 months indicate a reduced growth in EFF of +0.6 % (range of
−0.2 % to 1.5 %) based on national emissions projections for China, the
USA, the EU, and India and projections of gross domestic product corrected
for recent changes in the carbon intensity of the economy for the rest of
the world. Overall, the mean and trend in the five components of the global
carbon budget are consistently estimated over the period 1959–2018, but
discrepancies of up to 1 GtC yr−1 persist for the representation of
semi-decadal variability in CO2 fluxes. A detailed comparison among
individual estimates and the introduction of a broad range of observations
shows (1) no consensus in the mean and trend in land use change emissions
over the last decade, (2) a persistent low agreement between the different
methods on the magnitude of the land CO2 flux in the northern
extra-tropics, and (3) an apparent underestimation of the CO2
variability by ocean models outside the tropics. This living data update
documents changes in the methods and data sets used in this new global
carbon budget and the progress in understanding of the global carbon cycle
compared with previous publications of this data set (Le Quéré et
al., 2018a, b, 2016, 2015a, b, 2014, 2013). The data generated by
this work are available at https://doi.org/10.18160/gcp-2019 (Friedlingstein
et al., 2019).