Attention Deficit Hyperactivity Disorder (ADHD) is a highly prevalent childhood disorder, and related research has been increasing in recent years. However, it remains a challenging issue to accurately identify individuals with ADHD. The research proposes a method for ADHD detection using Recursive Feature Elimination-Genetic Algorithm (RFE-GA) for the feature selection of EEG data. Firstly, this study employed Transfer Entropy (TE) to construct brain networks from the EEG data of the ADHD and Normal groups, conducting an analysis of effective connectivity to unveil causal relationships in the brain's information exchange activities. Subsequently, a dual-layer feature selection method combining Recursive Feature Elimination (RFE) and Genetic Algorithm (GA) was proposed. Using the global search capability of GA and the feature selection ability of RFE, the performance of each feature subset is evaluated to find the optimal feature subset. Finally, a Support Vector Machine (SVM) classifier was employed to classify the ultimate feature set. The results revealed the control group exhibited lower connectivity strength in the left temporal alpha and beta bands, but higher frontal connectivity strength compared to the ADHD group. Additionally, in the gamma frequency band, the control group had higher top lobe connectivity strength than the ADHD group. Through the RFE-GA feature selection method, the optimized feature set was more concise, achieving classification accuracies of 91.3%, 94.1%, and 90.7% for the alpha, beta, and gamma frequency bands, respectively. The proposed RFE-GA feature selection method significantly reduced the number of features, thereby improving classification accuracy.