Here, we examined features of muscle coordination associated with reduced walking performance in chronic stroke survivors. Using motor module (a.k.a. muscle synergy) analysis, we identified differences in the modular control of overground walking and standing reactive balance in stroke survivors compared to age-similar neurotypical controls. In contrast to previous studies that demonstrated reduced motor module number post-stroke, our cohort of stroke survivors did not exhibit a reduction in motor module number compared to controls during either walking or reactive balance. Instead, the pool of motor modules common to walking and reactive balance was smaller, suggesting a reduction in generalizability of motor module function across behaviors. The motor modules common to walking and reactive balance tended to be less variable and more distinct, suggesting more reliable output compared to motor modules specific to one behavior. Indeed, higher levels of motor module generalization was associated with faster walking speeds in stroke survivors. Further, recruitment of a common independent plantarflexor module across both behaviors was associated with faster walking speeds. Our work is the first to show that motor module generalization across walking and balance may help to distinguish important and clinically-relevant differences in walking performance across stroke survivors that would have been overlooked by examining only a single behavior. Finally, as similar relationships between motor module generalization and walking performance have been demonstrated in healthy young adults and individuals with Parkinson's disease, our work suggests that motor module generalization across walking and balance may be important for well-coordinated walking.
New and Noteworthy:Our study is the first to simultaneously examine neuromuscular control of walking and standing reactive balance in stroke survivors. We show that motor module generalization across these behaviors (i.e., recruiting common motor modules) is reduced compared to neurotypical controls, which is associated with slower walking speeds. This is true despite no difference in motor module number between groups within each behavior, suggesting that motor module generalization across walking and balance is important for well-coordinated walking.