A new subpopulation of polar bears (Ursus maritimus) was recently discovered in the South-East of Greenland (SEG). This isolated colony inhabits a warmer climate zone, akin to the predicted future environments of polar bears with vastly reduced sea ice habitats, rendering this population of bears particularly important. Over two-thirds of polar bears will be extinct by 2050 with total extinction predicted by the end of this century and understanding possible mechanisms of adaptation via genomic analyses and preservation are critical. Transposable elements (TEs) are parasitic mobile elements that may play a role in an adaptive response to environmental challenges. We analysed transcriptome data from polar bear sub-populations in North-East and South-East Greenland (NEG, SEG), who reside in cooler and warmer habitats respectively, to identify differentially expressed, divergent TE species, TE families and linked changes in gene expression with some overlapping significantly differentially expressed TEs and genes. We identified activity hotspots in the genome of regions with significantly differentially expressed TEs. LINE family TEs were the most abundant, and most differentially expressed and divergent in the SEG population compared to reference TEs. Our results provide insights into how a genomic response at the TE level may allow the SEG subpopulations adapt and survive to climate change and provides a useful resource for conservation in polar bears.