2012
DOI: 10.1152/japplphysiol.00917.2009
|View full text |Cite
|
Sign up to set email alerts
|

Increased probability of repetitive spinal motoneuron activation by transcranial magnetic stimulation after muscle fatigue in healthy subjects

Abstract: Triple stimulation technique (TST) has previously shown that transcranial magnetic stimulation (TMS) fails to activate a proportion of spinal motoneurons (MNs) during motor fatigue. The depression in size of the TST response, but no attenuation of the conventional motor-evoked potential, suggested increased probability of repetitive spinal MN activation during exercise, even if some MNs failed to discharge by the brain stimulus. Here we used a modified TST [quadruple stimulation (QuadS) and quintuple stimulati… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2014
2014
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 46 publications
0
1
0
Order By: Relevance
“…In a fatigued state, the MSE area at low time scales of 1–5 became smaller, reminiscent of an increase in short-range correlation commonly observed in changed physiological complexity with aging and diseases [49]. An inherent part of transient loss of complexity in the force pulse trace is speculated to be an increase in the number of motoneurons d more than once in a short interval (doublets or triplets) during fatiguing contractions [50], a compensatory mechanism to escalate the central excitatory outflow to offset fatigue-induced increases in peripheral conduction impedance [51], [52]. According to the MSE algorithm, brief force events caused by short-term repetitive discharges of motoneurons could be counted as matching each other, when force pulse data were less coarse-grained at small time scales.…”
Section: Discussionmentioning
confidence: 99%
“…In a fatigued state, the MSE area at low time scales of 1–5 became smaller, reminiscent of an increase in short-range correlation commonly observed in changed physiological complexity with aging and diseases [49]. An inherent part of transient loss of complexity in the force pulse trace is speculated to be an increase in the number of motoneurons d more than once in a short interval (doublets or triplets) during fatiguing contractions [50], a compensatory mechanism to escalate the central excitatory outflow to offset fatigue-induced increases in peripheral conduction impedance [51], [52]. According to the MSE algorithm, brief force events caused by short-term repetitive discharges of motoneurons could be counted as matching each other, when force pulse data were less coarse-grained at small time scales.…”
Section: Discussionmentioning
confidence: 99%