Background Breast cancer (BRCA) is the most common cancer among women worldwide and results in the second leading cause of woman cancer death.Methods This study sought to develop a prognostic gene signature to predict the prognosis of patients with BRCA. Studies were performed using the genome-wide data of BRCA patients from the Gene Expression Omnibus dataset (GSE20685, GSE42568, GSE20711, GSE88770). Univariate COX regression analysis was used to determine the association between gene expression levels and overall survival(OS) in each dataset. Taking P value < 0.05 as the inclusion criterion, the common genes in all datasets were selected as prognostic genes, and a 9-gene prognostic signature was developed.Results The Kaplan-Meier survival curve was constructed using log-rank test to assess survival differences. The overall survival of patients in the low-risk group was significantly higher than that in the high-risk group. ROC analysis showed that this 9-gene signature showed good diagnostic efficiency both in overall survival(OS) and disease free survival(DFS). The 9-gene signature was further validated using GSE16446 dataset. In addition, multiple Cox regression analysis showed that this 9-gene signature was an independent risk factor. Finally, we established a nomogram that integrates conventional clinicopathological features and 9-gene signature. The analysis of the calibration plots showed that the nomogram has good performance.Conclusions This study has developed a reliable 9-gene prognostic signature, which is of great value in predicting the prognosis of BRCA and will help to make personalized treatment decisions for patients at different risk score.