Long-term effect assessments in ecotoxicological investigations are important, yet there is a lack of suitable exposure systems for these experiments that can be used for riverine species. A cost-efficient miniature circulatory system was developed that was evaluated for its applicability in long-term exposures in 2 stream-dwelling species: brown trout (Salmo trutta) and an amphipod (Gammarus roeseli). In an egg-to-fry exposure of S. trutta, the toxicity of 2 reverse osmosis concentrates was investigated as examples. Control hatching rate of yolk sac fry was 75 ± 7% and thus complies with the Organisation for Economic Co-operation and Development validity criterion (≥66%). The reverse osmosis concentrates did not impair the hatching rate in any tested concentration. In G. roeseli, mortality rates remained below 20% during a 21-d cultivation, fulfilling the common validity criterion in ecotoxicological testing. Mortality was significantly lower when the species was fed with conditioned alder leaves instead of an artificial shrimp food. Finally, a toxicity test on G. roeseli using copper as the test substance revealed median lethal concentration (LC50) values of 156 μg/L after 96 h and 99 μg/L after 264 h, which is in line with literature findings using other accepted exposure units. In conclusion, the miniature circulatory system provides a novel and cost-efficient exposure system for long-term investigations on riverine species that may also be applicable for other species of fishes and macroinvertebrates. Environ Toxicol Chem 2016;35:2827-2833. © 2016 SETAC.