Ganzfeld conditions induce alterations in brain function and pseudo-hallucinatory experiences, particularly in people with high positive schizotypy. The current study uses graph-based parameters to investigate and classify brain networks under Ganzfeld conditions as a function of positive schizotypy. Participants from the general population (14 high schizotypy (HS), 29 low schizotypy (LS)) had an electroencephalography assessment during Ganzfeld conditions, with varying visual activation (8 frequencies of random light flicker) and soundscape-induced mood (neutral, serenity, and anxiety). Weighted functional networks were computed in six frequency sub-bands (delta, theta, alpha-low, alpha-high, beta, and gamma) as a function of light-flicker frequency and mood. The brain network was analyzed using graph theory parameters, including clustering coefficient (CC), strength, and global efficiency (GE). It was found that the LS groups had higher CC and strength than the HS groups, especially in bilateral temporal and frontotemporal brain regions. Moreover, some decreases in CC and strength measures were found in LS groups among occipital and parieto-occipital brain regions. LS groups also had significantly higher GE in all Ganzfeld conditions compared to the HS groups. The random under-sampling boosting (RUSBoost) algorithm achieved the best classification performance with an accuracy of 95.34%, specificity of 96.55%, and sensitivity of 92.85% during an anxiety-induction Ganzfeld condition. This is the first exploration of the relationship between brain functional state changes under Ganzfeld conditions in individuals who vary in positive schizotypy. The accuracy of graph-based parameters in classifying brain states as a function of schizotypy is shown, particularly for brain activity during anxiety induction, and should be investigated in psychosis.