Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
BackgroundAs pregnancy accelerates glioma growth, therapeutic abortion has been recommended prior to tumor resection. Additionally, it has also been suggested that the extent of glioma resection is closely correlated with patient survival.Case presentationA 162-cm, 61.4-kg, 30-year-old, right-handed primigravida was referred to our institution at 21 weeks gestation to obtain a second opinion. At 18 weeks gestation, the patient developed new-onset generalized convulsive seizures (GCSs), which were poorly controlled by anticonvulsant polytherapy, early in the second trimester. A 6-cm lesion located in her left frontal supplementary motor area (SMA) was suspected as a grade III glioma, classified according to the World Health Organization (WHO) guidelines. Due to the limited evidence on the use of adjuvant therapy during pregnancy, tumors causing neurological symptoms and seizures must be treated, in order to stabilize the maternal condition and enable a safe birth. In the case of pregnant patients, awake craniotomy using intraoperative magnetic resonance imaging (iMRI) is considered advantageous, achieving gross total resection with a reduction of direct cortical stimulation, which may induce seizure, and so reducing fetal exposure to anesthetics. The “Asleep-Awake-Asleep” technique was performed at 27 weeks and 2 days gestation. As use of propofol in pregnant patients is prohibited, general anesthesia was maintained through administration of sevoflurane and remifentanil until the first scan of iMRI, and was subsequently re-induced with dexmedetomidine when tumor removal had been accomplished. A supraglottic airway (SGA) was used until the patient’s cranium was opened. There were no complications during either the procedure or the post-operative period. At 35 weeks gestation, the patient delivered a healthy baby of 2317 g. Pathological examination of the patient, revealed an anaplastic astrocytoma, thus radiotherapy and chemotherapy began 2 months post-delivery. There is no evidence of tumor recurrence in the patient and the child did not show any medical or developmental concerns at the point of the 17-month follow-up.ConclusionsSince evidence on the use of adjuvant therapy during pregnancy is limited, extensive resection with functional monitoring is recommended if a brain tumor is presumed to be malignant. Awake craniotomy is considered advantageous to pregnant patients because subjective movement preserves the patient’s motor function and reduces fetal exposure to anesthetics. Therefore, providing multidisciplinary discussion takes place within the decision-making process, as well as careful perioperative preparation, awake craniotomy should be considered, even in the case of pregnant patients.
BackgroundAs pregnancy accelerates glioma growth, therapeutic abortion has been recommended prior to tumor resection. Additionally, it has also been suggested that the extent of glioma resection is closely correlated with patient survival.Case presentationA 162-cm, 61.4-kg, 30-year-old, right-handed primigravida was referred to our institution at 21 weeks gestation to obtain a second opinion. At 18 weeks gestation, the patient developed new-onset generalized convulsive seizures (GCSs), which were poorly controlled by anticonvulsant polytherapy, early in the second trimester. A 6-cm lesion located in her left frontal supplementary motor area (SMA) was suspected as a grade III glioma, classified according to the World Health Organization (WHO) guidelines. Due to the limited evidence on the use of adjuvant therapy during pregnancy, tumors causing neurological symptoms and seizures must be treated, in order to stabilize the maternal condition and enable a safe birth. In the case of pregnant patients, awake craniotomy using intraoperative magnetic resonance imaging (iMRI) is considered advantageous, achieving gross total resection with a reduction of direct cortical stimulation, which may induce seizure, and so reducing fetal exposure to anesthetics. The “Asleep-Awake-Asleep” technique was performed at 27 weeks and 2 days gestation. As use of propofol in pregnant patients is prohibited, general anesthesia was maintained through administration of sevoflurane and remifentanil until the first scan of iMRI, and was subsequently re-induced with dexmedetomidine when tumor removal had been accomplished. A supraglottic airway (SGA) was used until the patient’s cranium was opened. There were no complications during either the procedure or the post-operative period. At 35 weeks gestation, the patient delivered a healthy baby of 2317 g. Pathological examination of the patient, revealed an anaplastic astrocytoma, thus radiotherapy and chemotherapy began 2 months post-delivery. There is no evidence of tumor recurrence in the patient and the child did not show any medical or developmental concerns at the point of the 17-month follow-up.ConclusionsSince evidence on the use of adjuvant therapy during pregnancy is limited, extensive resection with functional monitoring is recommended if a brain tumor is presumed to be malignant. Awake craniotomy is considered advantageous to pregnant patients because subjective movement preserves the patient’s motor function and reduces fetal exposure to anesthetics. Therefore, providing multidisciplinary discussion takes place within the decision-making process, as well as careful perioperative preparation, awake craniotomy should be considered, even in the case of pregnant patients.
Neuroanesthesia for the pregnant patient is required infrequently, and evidence-based recommendations for neuroanesthetic management are sparse. We present a framework for a practical approach to anesthesia of the pregnant patient with subarachnoid or intracerebral hemorrhage, intracranial tumor, traumatic brain injury, spinal tumor, or spinal injury. The importance of a team-approach is emphasized. The anesthesiologist may have to anesthetize the pregnant patient for neurosurgery well before delivery, for cesarean delivery at the time of the neurosurgical procedure, or for delivery after neurosurgery. These scenarios are discussed along with fetal safety and anesthetic considerations for interventional neuroradiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.