Current electroadhesive actuators cannot produce stable electroadhesive forces on the same substrate with different interfacial surface interactions. It is, therefore, desirable to develop electroadhesive actuators that can generate stable adhesive forces on different surface conditions. A symmetrical electroadhesive pad that is independent of different interfacial scratch directions is developed and presented. A relative difference of only 6.4% in the normal force direction was observed when the electroadhesive was facing an aluminium plate with surface scratch directions of 0°, 45°, 90°, and 135°. This step-change improvement may significantly promote the application of electroadhesion technology. In addition, this manifests that significant performance improvements could be achieved via further investigations into electroadhesive designs.