Early detection and viral concentration monitoring of human immunodeficiency virus in resource-poor settings are important to control disease spread and reduce mortality. Nucleic acid amplification tests are expensive for low-resource settings. Lateral flow antibody tests are not sensitive if testing is performed within 7−10 days, and these tests are not quantitative. We describe a signal enhancement technique based on fluorescent silica nanoparticles and bioorthogonal chemistries for the femtomolar detection of the HIV-1 p24 antigen. We developed a magnetic bead-based assay, wherein we used fluorescent-dye-encapsulated silica nanoparticles as reporters. The number of reporters was increased by using bioorthogonal chemistry to provide signal enhancement. The limit and range of detection of the sandwich immunoassay using alternating multiple layers for p24 in human serum were found to be 46 fg/mL (1.84 fM) and 46 fg/mL to 10 ng/mL, respectively. This simple assay was 217-fold higher in sensitivity compared to that of commercial enzyme-linked immunoassays (limit of detection of 10 pg/mL).