When solving the problem of increasing the efficiency of a forest fire soil-throwing machine containing a multi-stage rotor-thrower, a design is proposed in which the soil shaft is fully fed simultaneously to all blades of the multi-stage rotor-thrower. Determination of the kinematic parameters of the throwing process must be modeled taking into account physical and mechanical properties of soil. The purpose of this work is to increase the effectiveness of the prevention and extinguishing of forest fires with soil, by substantiating the parameters of a soil-throwing machine based on simulation of the working process of a rotor-thrower. As a result of the computational experiment, graphs are presented for determining the soil outlet angle and the ejection range with a zero blade inclination angle and for determining the soil outlet angle and ejection distance with a combined blade inclination angle. For given values of disk radii, the maximum soil fraction is ejected by the third disk, and the minimum by the first one. Therefore, the result of the computational experiment on the ratio predictably places the maximum amount of soil (more than 30%) at the distance of overlapping the trajectories of movement of soil particles ejected by the first and third disks, namely, in the range from 10.4-11.2 m. Thus, the software package can calculate not only the trajectory of soil movement depending on the design and technological parameters of the thrower rotor, by which it is possible to estimate the size of the ejection layer, but also the distribution of soil in the layer. The distribution obtained as a result of a computational experiment can be used to accumulate a database on the range of the largest part of the ejected soil and to refine the layer of maximum backfilling, taking into account physical and mechanical properties of soil