Operation of machines and equipment is accompanied by an impact produced by various types of loads leading to fatigue rupture of the structural materials. The most harmful are the vibration loads which in a corrosive environment increase the potential for a failure resulting in human casualties. Therefore, the task of ensuring the operating capability of machine elements and assemblies is one of the outstanding tasks for all industry sectors. In addition, the need for extending the service life and increasing the operational reliability is also determined by a relatively high cost of the machine structural materials and hardware items. Therefore, the execution of the experimental studies of the structural material fatigue features with a view to reduce the metal consumption, to establish new processing methods as well as to select a competitive material, are of the priority for the up-to-date machine building sector. The purpose of this article is to determine any fatigue behavior regularities in automotive materials which were pre-processed according to various technology types and modes and which were operating in a corrosive environment. The experimental data analysis has demonstrated that the longer the cyclic metal materials testing is run, the more sufficient is the decrease of the fatigue resistance of these.