With the rapid development of cloud computing and big data, diverse types of traffic generated from heterogeneous data sources are delivered throughout communication networks, which consist of various node kinds such as digital sensors and smart actuators, and different applications. Due to the shared medium, communication networks are vulnerable to misbehaving nodes, and it is a crucial aspect to maintain an acceptable level of service degradation. This paper studies the fault-aware resource allocation problem by exploiting multipath routing and dynamic rate assignment for heterogeneous sources. We estimate the impacts of faults and formulate the resource allocation as a lossy network flow optimization problem based on these estimates. The traditional flow optimization solutions focus on homogeneous traffic. In our work, we model the performance of heterogeneous applications as a relaxed utility function and develop an effective utility framework of rate control for heterogeneous sources with multipath routing in presence of misbehaving nodes. We design a distributed algorithm to decide the routing strategy and obtain the rate assignments on the available paths in a lossy utility fair manner. Extensive performance evaluations corroborate the significant performance of our algorithm in effective utility and utility fairness in the presence of misbehaving nodes.