2017
DOI: 10.5120/ijca2017913674
|View full text |Cite
|
Sign up to set email alerts
|

Incremental Clustering using Genetic Algorithm and Particle Swarm Optimization

Abstract: There are many supervised clustering algorithms based on static datasets for finding their optimal clusters. Clustering is the task of organizing data into clusters such that the data objects that are similar to each other. For finding clusters of data stream of chunks, i.e. for dynamic clustering we proposed a incremental clustering algorithm which is a combination of genetic algorithm and particle swarm optimization. In this paper, first we convert diabetes dataset into rough sets by applying appropriate alg… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 5 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?