Abstract:Abstract. Vector quantization methods are confronted with a model selection problem, namely the number of prototypical feature representatives to model each class. In this paper we present an incremental learning scheme in the context of figure-ground segmentation. In presence of local adaptive metrics and supervised noisy information we use a parallel evaluation scheme combined with a local utility function to organize a learning vector quantization (LVQ) network with an adaptive number of prototypes and veri… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.