“…[9, 4 2 , 6] Good (X 6 + X 3 + 1) [9, 4 3 , 3] Good (X − 1)(X 2 + X + 1) [9, 4 6 , 2] Good (X 8 + X 7 + 3X 6 + 3X 4 + 3X 2 + X + 1) [17, 4 9 , 7] Optimal (X − 1)(X 8 [31, 4 21 , 6] Optimal g 2 g 3 g 4 g 5 g 6 g 7 g 9 g 10 g 12 g 13 [63, 4 13 , 36] Optimal g 1 g 3 g 4 g 5 g 6 g 7 g 9 g 10 g 12 g 13 [63, 4 14 , 34] Optimal g 3 g 4 g 6 g 7 g 8 g 10 g 11 g 12 g 13 [63, 4 15 , 21] Optimal g 1 g 6 g 7 g 10 g 11 g 12 g 13 [63, 4 20 , 18] Optimal g 1 g 5 g 6 g 7 g 9 g 13 [63, 4 32 , 16] Optimal g 1 g 2 g 7 g 8 g 10 g 11 g 12 g 13 [63, 4 24 , 14] Optimal g 2 g 3 g 4 g 6 g 10 g 12 [63, 4 37 , 12] Optimal g 1 g 2 g 3 g 4 g 10 g 12 [63, 4 42 , 10] Optimal g 2 g 5 g 6 g 7 g 9 g 13 [63, 4 31 , 9] Optimal g 3 g 4 g 7 g 8 g 11 g 13 [63, 4 33 , 7] Optimal g 1 g 8 g 11 [63, 4 50 , 6] Optimal Example 4.4. The factorization of X 15 − 1 over 8 into a product of basic irreducible polynomials over 8 is given by…”