Abstract-We analyzed the far-field co-seismic response of the M W 9.0 Tohoku-Oki earthquake, which occurred on March 11th 2011 at the Japan Trench plate boundary. Our analysis indicates that the far-field co-seismic displacement was very sensitive to the magnitude of this event, and that a significant co-seismic surface displacement from earthquakes in the Japan Trench region can be observed in Eurasia only for events of M W C 8.0. We also analyzed the temporal characteristics of the near-field post-seismic deformation caused by the afterslip and the viscoelastic relaxation following the Japan earthquake. Next, we performed a simulation to analyze the influence of the two post-seismic effects previously mentioned on the far-field post-seismic crustal deformation. The simulation results help explain the post-seismic crustal deformation observed on the Chinese mainland 1.5 years after the event. Fitting results revealed that after the M W 9.0 Tohoku-Oki earthquake, the afterslip decayed exponentially, and may eventually disappear after 4 years. The far-field post-seismic displacement in Eurasia caused by the viscoelastic relaxation following this earthquake will reach the same magnitude as the co-seismic displacement in approximately 10 years. In addition, the co-and post-seismic Coulomb stress on several NE-trending faults in the northeastern and northern regions of the Chinese mainland were significantly enhanced because of the M W 9.0 earthquake, especially on the Yilan-Yitong and the Dunhua-Mishan faults (the northern section of the Tan-Lu fault zone) as well as the Yalujiang and the FuyuZhaodong faults.