The goal of this Research Topic was to bring together diverse scientific perspectives on lateralized brain mechanisms underlying emotion, motivation, and memory. The Topic resulted in eight articles, three of which report original research and five of which review and synthesize past research with the aim of developing new hypotheses and theory. A range of international experts with diverse backgrounds, theoretical perspectives, and experimental methods contributed to the Topic. Contributions strongly reflect this diversity, ranging from examining pupil dilation in response to viewing Rembrandt portraits to understanding how caffeine supplementation influences levels of spatial processing. In all cases, the authors developed strong, empirically guided insights into the lateralized brain mechanisms underlying behavioral effects. Two primary themes emerge to guide and constrain continuing research.The first theme is related to dynamic interhemispheric interactions that subserve emotion, motivational states, and memory. Elizabeth Shobe's article, Independent and Collaborative Contributions of the Cerebral Hemispheres to Emotional Processing (Shobe, 2014) proposes a framework for understanding the interaction of lateralized brain mechanisms for identifying and understanding emotional stimuli and engaging in higher-order emotional processing. Under this framework, the right hemisphere engages subcortical structures with the goal of identifying and comprehending positive and negative emotional stimuli, whereas the left hemisphere contributes to higher-level processing such as emotion regulation and adaptation. Critically, dynamic interhemispheric interactions provide the left hemisphere with the information it needs to execute relatively strategic processes. Spielberg and colleagues emphasize the importance of lateralized approach versus avoidance networks in guiding human behavior. In their article, Hierarchical Brain Networks Active in Approach and Avoidance Goal Pursuit (Spielberg et al., 2013), the authors propose a hierarchical model consisting of four levels: tactical, strategic, system, and temperamental, following a neurally inspired abstraction gradient along posterior to anterior areas of the prefrontal cortex. Right hemisphere regions process and update avoidance goals, and left hemisphere regions govern approach goals. The model dictates both intrahemispheric interactions across hierarchical layers, and also interhemispheric interactions that cut across both abstraction levels and motivational states; together, these interactions guide, constrain, and update goal-directed behavior over time. (Parker et al., 2013), demonstrating that horizontal saccadic eye movements enhance episodic but not semantic autobiographical memory retrieval. In accounting for these results, the authors point to the hemispheric encoding/retrieval asymmetry (HERA; Habib et al., 2003) model and its suggestion that episodic memory retrieval depends on efficient and dynamic interhemispheric interactions. They also suggest that saccadic...